CYbus Learn > Build and improve

Connectware & AWS IoT (Greengrass) Integration
by Klaus Pittig

Prerequisites
In this lesson, we will send data from the Connectware MQTT Broker to AWS loT.

It is required to set up a Connectware instance and at least one AWS loT Device. In case of using AWS loT at
the edge, an AWS loT Greengrass Core has to be set up.

We assume you are already familiar with the Connectware and its service concept. If not, we recommend

reading the articles and fora quick introduction. Furthermore,
this lesson requires basic understanding of MQTT and how to publish data on an MQTT topic. If you want to
refresh your MQTT knowledge, we recommend the lessons and

Introduction

This article is divided into three parts.

First, it provides general information about AWS IoT services and their differences. Feel free to skip this
section if you are familiar with AWS loT and the differences between AWS loT Core and loT Greengrass.

Then, the current integration mechanisms between the Connectware and AWS loT are explained through a
hands-on approach.

Finally, the article describes the tools to work with your MQTT use case to prototype, review and monitor the
integration scenario.

AWS loT

AWS IoT is a managed cloud platform that lets connected devices interact easily and securely with cloud
applications and other devices. AWS loT practically supports a nearly unlimited number of devices and
messages, and can process and route those messages to AWS endpoints and to other devices reliably and
securely.

For AWS loT, Amazon offers a software development kit available for most popular programming languages
and platforms.

1 www.cybus.io

https://www.cybus.io/learn/connectware-technical-overview/
https://www.cybus.io/learn/service-basics/
https://www.cybus.io/learn/mqtt-basics/
https://www.cybus.io/learn/how-to-cconnect-an-mqtt-client-to-publish-and-subscribe-data/
https://www.cybus.io/learn/how-to-cconnect-an-mqtt-client-to-publish-and-subscribe-data/

CYbus Learn > Build and improve

AWS loT Core

AWS loT Core is the main component to manage devices, their certificates, shadows, Greengrass resources
and integration rules to subsequent AWS resources like loT Analytics. It also offers ways to audit and test
your loT use cases.

AWS loT Greengrass

AWS loT Greengrass extends AWS Cloud resources to edge devices, so they can act locally on the generated
data, while still using the cloud for management, analytics, and durable storage. It is possible for connected
devices to interact with AWS Lambda functions and Docker containers, execute predictions based on machine
learning models, keep device data in sync, and communicate with other devices — even when not connected
to the Internet.

Greengrass has the following advantages:

+ it allows reducing latency in the solution and responding to local events in near real-time.

* it decreases the cost and amount of data devices exchange with the cloud.

it makes it possible to operate offline even with interrupted connectivity to the cloud.

* it provides secure communication by authenticating devices and encrypting device data for both local and
cloud communications so that data is never exchanged without proven identity.

+ it simplifies device programming with support for AWS Lambda and Docker containers.

Although in many scenarios these advantages are very significant, one could also mention some drawbacks

to make the picture more complete:

+ Relying on these advantages also comes with a vendor lock-in to AWS resources.

+ The Greengrass initial setup is comparatively heavyweight and complex.

+ The advantage of decreased cost must be put into perspective: it is true compared to using AWS loT
without an edge gateway, but Greengrass customers pay per device, the traffic to the cloud and for any
other subsequent AWS resources used within Greengrass.

« The learning curve is rather steep for users who have not yet used AWS resources in depth. In those
cases it might be easier and more efficient to integrate machines in an lloT edge solution such as the
Connectware with their endpoints, data mapping, transformation rules, and multiple distribution targets
(even different cloud providers).

Connectware & AWS loT Integration
Before proceeding further, first set up AWS loT Core (and AWS loT Greengrass for an edge deployment) by

following the respective instructions:

2 www.cybus.io

CYbU.S Learn > Build and improve

To integrate AWS loT with the Cybus Connectware, the built-in MQTT connector with TLS support is the
simplest, most reliable and secure way of communication. For a successful AWS loT integration, the
Connectware does not require more than that. As an additional advantage, the Connectware MQTT connector
has also data buffering built-in, so that data is stored locally when there is a temporary connection failure
with AWS loT Core or Greengrass Core.

There can be two integration scenarios.

In the first integration scenario, the Connectware connects directly to the AWS cloud:

Edge Cloud

‘.g—

Secure MQTT ——p Q@P@

AWS loT Core

Cybus Connectware

Cybus AWS IoT Core

In the second integration scenario, the Connectware is connected to Greengrass Core, which is meant to be
deployed as a gateway to the AWS cloud next to the Connectware lloT Edge Gateway:

3 www.cybus.io

https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/gg-gs.html

CYbU.S Learn > Build and improve

Edge Cloud

Cybus Connectware AWS Greengrass Core

@500

Cybus AWS IoT Greengrass

Cybus Connectware Service for AWS loT

For AWS loT connections using the Connectware, the following has to be configured:
* the AWS loT ATS endpoint address for a Cybus MQTT connection resource

+ the certificates provided after creation of an AWS loT Core device

+ the Amazon root certificate

For details on how to get this information, see the article . Use the
example below to implement a simple AWS loT service transmitting any data structure in the selected MQTT

topic.

The definitions part requires PEM formatted certificates:

+ caCert: the root certificate provided by Amazon (AmazonRootCA1.pem)
+ clientCert: the device certificate

+ clientPrivateKEy: the device private key

You may then configure Endpoint and Mapping resources following the

The commissioning file below sends any data published on topics ${Cybus: :MgttRoot}/test/#topic
to AWS loT into topics TestDevice/$topic with a simple transformation rule.

4 www.cybus.io

https://github.com/cybusio/example-how-to-connect-aws-iot-core-and-iot-greengrass
https://docs.cybus.io/latest/user/resources

CYbus Leal‘n > Build and improve

Make sure you are publishing data on the Connectware broker on the respective topic. The placeholder
${Cybus: :MgttRoot} represents the root topic defined as services/<serviceId> after the service
is successfully started. The notation #topic/$topic represents a wildcard mapping from any topic name
used in subscribe to the same topic name in publish, which has the effect of an MQTT bridge with
applied rules like the transformation in the example.

Further details on MQTT topic transformations can be found in the article

description: >

Cybus Connectware to AWS IoT Core
metadata:

name: AWS IoT Core Test

version: 1.0.0

provider: cybus

homepage: https://www.cybus.io

parameters:
Aws_ToT_Endpoint_Address:
type: string
description: The ATS endpoint to reach your AWS account's AWS IoT Core
default: <your-aws-account-endpoint-id>-ats.iot.eu-central-1.amazonaws.

com
definitions:
The root CA certificate as PEM format (AmazonRootCAl.pem)

caCert: |

The device certificate in PEM CRT format

clientCert: |

The device private key in PEM format

clientPrivateKey: |

5 www.cybus.io

https://www.cybus.io/learn/how-to-cconnect-an-mqtt-client-to-publish-and-subscribe-data/
https://www.cybus.io/learn/how-to-cconnect-an-mqtt-client-to-publish-and-subscribe-data/

CYbus Learn > Build and improve

resources:

awsMqgttConnection:
type: Cybus::Connection
properties:

protocol: Mqtt

connection:
host: !ref Aws_IoT_Endpoint_Address
port: 8883

scheme: mqtts

clientId: !sub "${Cybus::ServiceId}-awsMgttConnection"
mutualAuthentication: true

caCert: lref caCert

clientCert: !ref clientCert

clientPrivateKey: !ref clientPrivateKey

sourceTargetMapping:
type: Cybus::Mapping
properties:
mappings:
- subscribe:
topic: !sub "${Cybus::MgttRoot}/test/#topic"
publish:

connection: !ref awsMqgttConnection

topic: TestDevice/$topic

rules:
- transform:
expression:
(
{
"deviceId": "TestDevice",
"payload": $
}
)
6

www.cybus.io

CYbus Leal‘n > Build and improve

Changes for AWS loT Greengrass

In order to connect to a Greengrass Core, the example service commissioning file needs several changes:

+ Use the hostname/ip of the Greengrass Core instead of the ATS endpoint

+ Use the Greengrass Group Certificate Authority instead of the Amazon Root CA

+ Configure the MQTT clientld, which needs to be equal to the device name for which the certificates are
configured.

See the article about how to get the Greengrass Group Certificate
Authority.

parameters:

awsGreengrassClientId:
type: string
default: TestDeviceEdge

resources:
greengrassTestDeviceEdgeMqgttConnection:
type: Cybus::Connection
properties:
protocol: Mqgtt
connection:
host: !ref Greengrass Core Endpoint_ Address
port: 8883
scheme: mqtts
clientId: !ref awsGreengrassClientId
mutualAuthentication: true
caCert: !ref caCert
clientCert: !ref clientCert

clientPrivateKey: !ref clientPrivateKey
Tools

To implement or maintain a new lloT Edge integration use case as fast and reliable as possible, there are
suitable tools for working with MQTT, Connectware and AWS loT.

7 www.cybus.io

https://github.com/cybusio/example-how-to-connect-aws-iot-core-and-iot-greengrass

CYbus Leal‘n > Build and improve

AWS Command Line Interface (CLI)

The AWS CLI generally helps with any task on AWS. In this case we have at least two tasks being most
efficiently completed using the CLI:

1) Find out the AWS loT ATS endpoint defined for your AWS account:

aws iot describe-endpoint --endpoint-type iot:Data-ATS

The response contains the AWS account specific ATS (Amazon Trust Services) endpoint address to be used
as the MQTT hostname:
{

"endpointAddress": "a7t9...1lpi-ats.iot.eu-central-1.amazonaws.com"

2) Get the Greengrass Group Certificate Authority certificate in case of using AWS loT Greengrass. You then
need the following for the caCert setting in the service commissioning file instead of the Amazon Root CA:

aws greengrass list-groups

aws greengrass list-group-certificate-authorities --group-id "4824ea5c-f042-
42be-addc-fcbde34587e7"

aws greengrass get-group-certificate-authority --group-id "4824ea5c-fo42-
42be-addc-fcbde34587e7" \

--certificate-authority-id
"3e60c373ee3abl0b039eada99eaf667746849e3fd87940cb3afd3elc8ded54af"

The JSON Output of the latter call has a field PemEncodedCertificate containing the requested
information which needs to be set as the caCert parameter similar to this:

MIIC1TCCAb2gAwIBAgIJANXVxedsqvdKMABGCSqGSIb3DQEBBQUAMBOXGDAWBENVBAMTD3d3dy
51eGFtcGx1LmNvbTAeFwOyMDEWMDUWNTM4MzRaFwOzMDEwWMDMWNTMAMzRaMBoxGDAWBENVBAM
TD3d3dy51eGFtcGx1LmNvbTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQOCEEEBAM/ONrS45c¢
mOoVF3+8q8TUzj+E3UH81dnJIPCQFGMalL+7Poxb00fYF3ETKEW+dijIZ0fus9dSPX7qBDbfilz/
HtNppGDem4IjgC52iQ13B1R7TvU8yLN1iv43uDDUd+PkzW1lcWbUuykr5QPG2sIDSANukosvRdFK
04ydPOHr9iudofbg4ak6hMFCrzJubKQqhcBTSsxGt178abx0Q49shuWr9RRjzqE6mMRFa4h@DrkBs
tgAfmsDRGm4ySBCM7lwxphSsoejb6139WI/MNU7/U7cGj26ghWHAWp8VCksBOgma8tmr/@BuqcC
gKJYaDr1tf4SVx1wU20K+jz@pphdEwSjOCAWEAAaMeMBwwGgYDVRORBBMWEYIPd3d3LmV4YWlwb

8 www.cybus.io

CYbU.S Learn > Build and improve

GUUY29tMABGCSqGSIb3DQEBBQUAA4IBAQBkcKC3cgHIGNa60xA5QM3dGM5pEiSXyZtSHWOW8z6w
UlYtir6U+mWIb9yg7zaSy9nUOqU4sizQh1HG/Mq9K2WbflGafvfNewWl6uyINdjcfGYDh43UDkXH
r5Xzky5XIgtOFx4BWmjgbLYsza7qpbelg5ekUYPYQwlIc2sNpyncmSOeutgdtAO7uzDulx84WPc
ZzUjDHKYfupuDXkWroPnHTAx1J6vtgW9o76c3Z5rQ518bUysWhLBEM8q20P/zmGDo7fpUHYOKo5q
U4h7vGD3tOPb4ufPOd7XtHuY6HsI2cAPV3tpuetHH6wyAQTG91luhdYrZjAp+Zv1iwBm+9nXYp/Y

Cybus workbench service

The is basically a Node-RED application running securely on the Connectware as a service.
This opens up the possibility to install any Node-RED nodes within the service container for quick prototyping
as well as for the production environment. If your use-case cannot be achieved with the above service
commissioning file, using the workbench will give you some flexibility and additional tools to prototype your
solution using Node-RED modules.

In case of AWS loT, MQTT connection is enough for most integration scenarios. You may use simple injection
nodes and some random value generator in order to implement and test the use northbound to AWS IoT:

PY v { DeviceData: object }
Publish to feeery o ey e ~hineData magtt
~object
~DeviceData: object
Temperature: 67.4
. ~Position: object
Publish to services/awsiotgreeng ftest/machineData 1 msg.payload —
Publish continually to Cybus GGC v structured random values

~object

~DeviceData: object
Temperature: 78.38

If there are other requirements such as working with shadow devices and other AWS resources, e.g. as part
of the loT Greengrass Core deployment, you may want to use additional Node-RED modules supporting AWS.

AWS loT SDK

If it comes to more complex data management and handling, you may want to use the to
create a specific Connector Service for Connectware to cover your requirements.

9 www.cybus.io

https://docs.cybus.io/latest/user/workbench.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html

CYbus Leal’n > Build and improve

In most cases, it is enough to process any kind of device data and apply rules to them on the Connectware as

the most powerful edge gateway tool. Similar capabilities can be used on the near-cloud gateway AWS loT

Greengrass or AWS loT Core itself to manage rules and transformations near the shadow devices definitions.

What works best depends on your business strategy and technical constraints.

AWS loT Core, Analytics and other AWS resources

Now that we are successfully sending the data to the loT Core, we can monitor the transmitted data using

various AWS resources.

The obvious tool is the AWS loT Core MQTT Client offered on the AWS loT console. With this tool you regularly

subscribe to your topic defined in the service commissioning file for outgoing data:

MQTT client . Connected as iotconsole-1601829508698-0 ~

m R

Subseribe to a topic .
Publish

Publish to a topic Specify a topic and a message to publish with a Qo5 of 0.

TestDeviceEdge/machineData
TestDeviceEdge/machineData %

TestDeviceEdge/machineData October 04, 2020, 18:39:18 (UTC+0200)
{

“devicelId": "TestDeviceBdge”,

“timestamp": "2020-10-04T16:39:18.1252",

"temperature”: 21.029999999999998,
"position_x": 0.99,
"position_y": 0.911,
"position_z": 0.336

Pause

Expert Hide

In order to make use of AWS resources, you define AWS loT rules and define actions appropriately, e.g.

transmission to loT Analytics and a DynamoDB table:

10

www.cybus.io

CYbU.S Learn > Build and improve

AWS laT Rules loTAnalytics_TestDeviceEdge

loTAnalytics_TestDeviceEdge

ENABLED .
Actions -

I Overview Description Edit

Tags Send all messages matching "TestDeviceEdge/#" topic filter into "TestDeviceEdge” loT Analytics channel.

Rule query statement Edit

The source of the messages you want to process with this rule.

Using 5QL version 2016-03-23

Actions

Actions are what happens when a rule is triggered. Learn more

‘0 Send a message to loT Analytics Remove Edit »

TestDeviceEdge

TestDeviceEdgeTable

‘ Split message into multiple columns of a Dy... Remove Edit »

The AWS loT Console helps to quickly implement data transfer to these endpoints.

An example of how to work with these resources could be a change to the transformation mentioned above to
better meet the requirements using the fast and easy mapping support of the Connectware.

Given a requirement to flatten an original data object injected into the internal topic, you can easily transform
that data using a Connectware transformation rule using

Given a structured object:

"DeviceData": {
"Temperature": <decimal>,
"Position": {

"X": <decimal>,
"Y": <decimal>,

"Z": <decimal>

1 www.cybus.io

https://jsonata.org

CYbus Learn > Build and improve

As an example, the above mentioned mapping could be then enhanced for flattening the elements and adding
a timestamp:

sourceTargetMapping:
rules:
- transform:
expression:
(
{
"deviceId": "TestDeviceEdge",
"payload": $
}
)
- transform:
expression:
(
{
"deviceId": "TestDeviceEdge",
"timestamp": $now(),
"temperature”: $.payload.DeviceData.Temperature,
"position_x": $.payload.DeviceData.Position.X,
"position_y": $.payload.DeviceData.Position.Y,
"position_z": $.payload.DeviceData.Position.Zz
}
)

After implementing the use case, you may see the options to shorten things a bit. The Connectware then
plays its strength with fast integration processes near the connected devices, where most of the data pre-
processing can be realized with low latency and fewer costs before transmitting it to the cloud.

The enhanced transformation rule within the Connectware mentioned above may be inspired by a requirement
to write the data in a well-structured database:

12 www.cybus.io

<) CYbus Learn - uild and improve

TestDeviceEdgeTable Close

Items

Or the requirement was to create some graph with Amazon Quicksight:

Overview Metrics Alarms Capacity = Indexes Global Tables Backups Contributor Insights =~ Trigge!

Actions ~

Scan: [Table] TestDeviceEdgeTable: timestamp
timestamp € « deviceld -~ position_x - position_y -~ position_z -~ temperature
2020-10-04T15:22:54.108Z TestDeviceEdge 0.8637 0.029 0.5 80.66
2020-10-04T15:22:59.080Z TestDeviceEdge 0.788 0.31 0.575 50.31
2020-10-04T15:23:04.082Z TestDeviceEdge 0.548 0.815 0.432 6.32
2020-10-04T15:23:09.0912 TestDeviceEdge 0.3 0.286 0.664 48.32
2020-10-04T15:23:14.099Z TestDeviceEdge 0.983 0.273 0.063 24.37
2020-10-04T15:23:19.102Z TestDeviceEdge 0.883 0.377 0.795 32.74
2020-10-04T15:23:24.109Z TestDeviceEdge 0.39 0.349 0.083 47.46
2020-10-04T15:23:29.081Z TestDeviceEdge 0.098 0.022 0.509 30.65
2020-10-04T15:23:34.0842 TestDeviceEdge 0.169 0.928 0.287 22.8
2020-10-04T15:23:39.084Z TestDeviceEdge 0.099 0.394 0.982 44.4
2020-10-04T15:23:44.086Z TestDeviceEdge 0.735 0.904 0.758 10.54

0.8

06

o4

oz

15:50 1551 15:52

15:53

15:54 15:55

15:56

1557

15:58 15:59

Group By: timestamp (MINUTE)

13

16:00

16:01

16:02

16:03

www.cybus.io

CYbus Learn > Build and improve

If it comes to the AWS Cloud, there is a vast amount of resources that can be useful to create your loT
Application. You should especially have a look at lambda functions that could be deployed to your loT
Greengrass Core instance.

Other new tools like AWS loT SiteWise or AWS loT Things Graph may be useful to build your loT applications
faster with easier management and monitoring.

Summary

This lesson first offered a brief introduction to AWS IoT and its components available for integration with
other services. Then it explained how to send data from the Connectware MQTT Broker to AWS loT Core or
Greengrass Core with a simple commissioning file using the built-in MQTT connector of the Connectware.
Furthermore, the Cybus workbench service for prototyping more advanced scenarios was presented. The
lesson finished with a description of some basic and advanced tools used to monitor data flow between AWS
loT and Connectware.

Where to go from here

Cybus provides an example with sample service commissioning files, and some more technical details in the
Github project

From there you may have further ideas on how to benefit from the lloT Edge capabilities of the Connectware
compared to AWS loT and Greengrass.

Cybus is a specialist for secure lloT Edge software, headquartered in Germany. Cybus Connectware serves smart factories
as a universal Edge and DevOps hub. Machine builders and providers of lloT services use the Cybus Connectware as
a software-based gateway. As early as 2017, Cybus published the first secure industrial connector for machine data
according to today's DIN SPEC 27070 standard. Industry analyst Gartner named Cybus a worldwide "Cool Vendor".
Today, the company counts medium-sized and large companies from numerous industrial sectors such as mechanical

engineering, automotive and aviation among its customers.

Cybus GmbH - OsterstraBe 124 - 20255 Hamburg - Germany - www.cybus.io - hello@cybus.io - (+49) 40 228 58 68 51

14 www.cybus.io

https://github.com/cybusio/example-how-to-connect-aws-iot-core-and-iot-greengrass

