
1 www.cybus.io

Cybus Learn > Build and improve

Generic VRPC connector
by Mariano Simone

Prerequisites
•	 Be familiar with the VRPC project
•	 Medium Javascript knowledge
•	 Be familiar with npm
•	 Be familiar with Docker

Conventions

From now on I'll reference the protocol we are building as newprotocol. You should pick your own name.

Introduction

This article will guide you on how to build your own protocol connector using the VRPC generic protocol.
You will learn how to build an agent for your protocol and how to integrate it on a Connectware Service
Commissioning File.
You will also learn how to package your project as a docker image for easy distribution.
For better understanding of all the topics discussed here you should take a look at generic VRPC protocol.

What is the VRPC generic protocol?

With the help of the VRPC project we can extend the capabilities of the Connectware by allowing users to
implement their own protocols.
We do this by using a special protocol (genericVrpc) that will wrap around your own implementation.
All the communication between the Connectware and the new protocol will be managed by VRPC.

Creating the project

Before we begin laying out the code for our protocol, we need to create a repository for it.

So, go ahead and run the following commands:

mkdir newprotocol-connector

cd newprotocol-connector

git init .

echo node_modules > .gitignore

mailto:https://github.com/bheisen/vrpc?subject=
mailto:https://javascript.info/?subject=
mailto:https://nodesource.com/blog/an-absolute-beginners-guide-to-using-npm/?subject=
mailto:https://docker-curriculum.com/?subject=
mailto:https://docs.cybus.io/latest/user/protocols/genericVrpc.html?subject=

2 www.cybus.io

Cybus Learn > Build and improve

Alright, almost done! Now, we need to create a npm project so we can manage our project dependencies.
We can do this with the following command:
npm init -y

Installing libraries

Now we have our project base ready, lets install some basic libraries that we need to make it all work:

npm install config # Node module to handle project configurations

npm install js-yaml # Allow loading yaml based config files

npm install vrpc # The VRPC library

Additionally, you should install all the libraries you need to make your project work.

Configurations

Now, it is time to add the configuration files to our project.
So, go ahead and create the config directory in the project root by running:
mkdir config

Then create the following files inside:

default.yaml:
mqtt:

 scheme: mqtt

 host: broker

 port: 1883

vrpc:

 domain: 'newprotocol.vrpc'

 agent: 'newprotocol.connector'

NOTE
You should configure vrpc.domain and vrpc.agent properties according to your protocol.

custom-environment-variables.yaml:
mqtt:

 scheme: MQTT_SCHEME

3 www.cybus.io

Cybus Learn > Build and improve

 host: MQTT_HOST

 port: MQTT_PORT

 username: MQTT_USER
 password: MQTT_PASSWORD

vrpc:

 domain: VRPC_DOMAIN

 agent: VRPC_AGENT

Cool, configuration is done!
Now you can configure your project with additional variables you may need.

Let's add some code!

We can now proceed to add a class that will implement our protocol.
First, create the src directory:
mkdir src

Then, add the following class template inside:

NewProtocol.js:
const { EventEmitter } = require('events')

class NewProtocol extends EventEmitter {

 constructor (params) {

 super()

 const defaultOptions = {

 // Your protocol default options.

 }

 // Merge default options with the ones specified on the commissioning file.

 this._options = Object.assign(defaultOptions, params.options)

 }

 async connect () {

 // Connect to your protocol here

 // Emit 'connected' when you are done

4 www.cybus.io

Cybus Learn > Build and improve

 this.emit('connected')

 }

 async disconnect () {

 // Disconnect from your protocol here

 // Emit 'disconnected' when you are done

 this.emit('disconnected')

 }

 async subscribe (address, id) {

 // Subscribe to your protocol here

 // Emit an event when there is data on this subscription

 this.emit(id, { value: 'some data' })

 }

 async unsubscribe (id) {

 // Unsubscribe to your protocol here

 }

 async read (address) {

 // Implement the read operation of your protocol here

 // then return it

 return 'read data'

 }

 async write (address, data) {

 // Implement the write operation of your protocol here

 }

}

// Export the class

module.exports = NewProtocol

Now, you need to implement all the protocol main functions (connect, disconnect, write, read, subscribe,
unsubscribe).

5 www.cybus.io

Cybus Learn > Build and improve

Once we have our implementation ready, we need to register the class on a VRPC agent and serve it to the
Connectware.
To do that, create the following file in the project root, with this content:

index.js:
'use strict'

const { VrpcAdapter, VrpcAgent } = require('vrpc')

const config = require('config')

// Register our new protocol class

VrpcAdapter.register(require('./src/NewProtocol'))

// Create a VRPC agent

const agent = new VrpcAgent({

 domain: config.get('vrpc.domain'),

 agent: config.get('vrpc.agent'),

 username: config.get('mqtt.username'),

 password: config.get('mqtt.password'),

 broker: '${config.get('mqtt.scheme')}://${config.get(

 'mqtt.host')}:${config.get('mqtt.port')}'

})

// Serve all registered classes back to the Connectware

agent.serve()

Dockerfile

To be able to run this project we need to package it on a docker image.
So, lets create a Dockerfile in the project root with the following content:

FROM node:12.18.2-alpine@sha256:b48d5259d91e549e4941d5170870619d2e9c27de648e

6230625752481232a005

WORKDIR /app

COPY . /app

RUN npm install

6 www.cybus.io

Cybus Learn > Build and improve

Cybus is a specialist for secure IIoT Edge software, headquartered in Germany. Cybus Connectware serves smart factories

as a universal Edge and DevOps hub. Machine builders and providers of IIoT services use the Cybus Connectware as

a software-based gateway. As early as 2017, Cybus published the first secure industrial connector for machine data

according to today‘s DIN SPEC 27070 standard. Industry analyst Gartner named Cybus a worldwide "Cool Vendor".

Today, the company counts medium-sized and large companies from numerous industrial sectors such as mechanical

engineering, automotive and aviation among its customers.

Cybus GmbH · Osterstraße 124 · 20255 Hamburg · Germany · www.cybus.io · hello@cybus.io · (+49) 40 228 58 68 51

ENTRYPOINT ["node", "."]

Building the image

To build the image run the following command in the project root:
docker build -t newprotocol-connector:0.1 .

Running the image

To run the image run the following command in the project root:

docker run -v /tmp/data:/data -d --name newprotocol-connector --rm -e MQTT_

USER=admin -e MQTT_PASSWORD=admin newprotocol-connector:0.1

Working example

You can find a working connector for the Atlas Copco OpenProtocol here.

mailto:https://github.com/cybusio/example-open-protocol-connector?subject=

