
1 www.cybus.io

Cybus Learn > Build and improve

How to Connect a machine via Heidenhain DNC interface
by David Schmeding

Prerequisites

This lesson assumes that you want to integrate a Heidenhain controller using the DNC interface protocol
with the Cybus Connectware. To understand the basic concepts of the Connectware, please check out the
Technical Overview lesson. To follow along with the example, you will also need a running instance of the
Connectware. If you don't have that, learn How to install the Connectware. Additionally, it is not required, but
will be useful to be familiar with the User Management Basics as well as the lesson How To Connect an MQTT
Client.

Introduction

This article will teach you the integration of Heidenhain controllers. In more detail, the following topics are
covered:

• Setup of the Cybus Heidenhain Agent
• Selecting the methods
• Creating the commissioning file
• Installing the service
• Verifying data in the Connectware Explorer

The commissioning files used in this lesson are made available in the Example Files Repository on GitHub.

About Heidenhain DNC

Heidenhain is a manufacturer of measurement and control technology which is widely used for CNC machines.
Their controllers provide the Heidenhain DNC interface, also referred to as "option 18", which enables vertical
integration of devices and allows users to access data and functions of a system. The DNC protocol is based
on Remote Procedure Calls (RPC), which means it carries out operations by calling methods on the target
device. You can find a list of the available methods in the Cybus Docs.

Cybus Heidenhain Agent

Utilizing Heidenhain DNC with the Connectware requires the Cybus Heidenhain Agent running on a Windows
machine or server on your network. This agent uses the Heidenhain RemoTools SDK to connect to one or

https://www.cybus.io/learn/connectware-technical-overview/
https://www.cybus.io/learn/installing-the-connectware/
https://www.cybus.io/learn/user-management-basics/
https://www.cybus.io/learn/how-to-cconnect-an-mqtt-client-to-publish-and-subscribe-data/
https://www.cybus.io/learn/how-to-cconnect-an-mqtt-client-to-publish-and-subscribe-data/
https://github.com/cybusio/example-how-to-connect-heidenhain-dnc
https://docs.cybus.io/latest/user/protocols/heidenhain.html#heidenhain-methods

2 www.cybus.io

Cybus Learn > Build and improve

more Heidenhain controllers and communicates to the Connectware via MQTT. The Heidenhain Agent and
required dependencies are provided to you by our Support Team.

Prerequisites

The host of the Cybus Heidenhain Agent must meet the following requirements:
• Windows 10 or Windows Server 2019
• Installed Heidenhain SDK
• Windows host must be able to reach machines (or emulators) via network
• Windows host must be able to reach Connectware instance via network

Installation

• Start the Cybus Heidenhain Agent installer and follow the installation instructions
• Input Connectware host IP address

After successful installation, a windows system service with name "Cybus Heidenhain Agent" is up and
running. It is already configured to automatically start on windows restart and to restart in case of crash. You
can always inspect the status under "Windows Services".

Post-installation Steps

Go to the Connectware Admin User Interface (Admin UI) (e.g. https://myConnectware-IP) and log in.

Agent Role (once)

The agent needs to be able to communicate with the Connectware, thus we need to grant this permission.
Permissions are bundled within Connectware roles (see User Management Basics). Create the following role:
• Name: heidenhain-agent
• Data permission: edge.cybus/# (readWrite)

Agent Onboarding (per Agent)

• Use the Client Registry (User Management > Client Registry) to onboard the agent (for details see How To
Connect an MQTT Client)

 - Enable self registration
 - Wait for agent to appear
 - Check if agent is correct

mailto:support@cybus.io
https://myConnectware-IP
https://www.cybus.io/learn/user-management-basics/
https://www.cybus.io/learn/how-to-cconnect-an-mqtt-client-to-publish-and-subscribe-data/
https://www.cybus.io/learn/how-to-cconnect-an-mqtt-client-to-publish-and-subscribe-data/

3 www.cybus.io

Cybus Learn > Build and improve

 - Grant access to agent

• Go to User Management > Users
 - Click on Heidenhain agent user
 - Give the user the heidenhain-agent role
 - Save

Installing and Starting the Heidenhain Emulator

For this lesson we do not have a machine with a TNC 640 controller available so we will utilize the TNC 640
emulator running on a Windows machine.

Download the latest version of TNC 640 Programming Station from heidenhain.com and install it to the same
machine as the agent or another Windows machine of known IP address in the same network. After the
installation you can start the program with the desktop shortcut TNC 640. Once the program is started and
you see the tab Power interrupted you can press the CE button on the Keypad to enter the manual mode. The
emulator should now also be available on your network.

https://www.heidenhain.com/en_US/software/

4 www.cybus.io

Cybus Learn > Build and improve

Selecting the methods

The most essential information we need to specify the commissioning file for our Heidenhain DNC application
is the set of methods of the controller we want to make available with our Connectware. We could just take
the whole list from the Cybus Docs and integrate all of the functions to be available on the Connectware but
to not lose focus in this lesson we will pick a small set of them for demonstration purposes.

We will integrate the following methods:

• getState
• getPlcData
• getToolTableRow
• transmitFile
• onToolTableChanged

Writing the Commissioning File

The Commissioning File is a set of parameters which describes the resources that are necessary to collect
and provide all the data for our application. It contains information about all connections, data endpoints
and mappings and is read by the Connectware. To understand the file's anatomy in detail, please consult the
Cybus Docs.

To get started, open a text editor and create a new file, e.g. heidenhain-example-commissioning-
file.yml. The commissioning file is in the YAML format, perfectly readable for human and machine! We will
now go through the process of defining the required sections for this example:

• Description
• Metadata
• Parameters
• Resources

Description and Metadata

These sections contain more general information about the commissioning file. You can give a short
description and add a stack of metadata. Regarding the metadata, only the name is required while the rest is
optional. We will just use the following set of information for this lesson:

https://docs.cybus.io/latest/user/protocols/heidenhain.html#heidenhain-methods
https://docs.cybus.io/latest/user/services/structure/index.html

5 www.cybus.io

Cybus Learn > Build and improve

description: >

 Heidenhain DNC Example Commissioning File

 Cybus Learn - How to connect a machine via Heidenhain DNC interface

 https://learn.cybus.io/lessons/how-to-connect-heidenhain-dnc/

metadata:

 name: Heidenhain DNC Example

 version: 1.0.0

 icon:

https://www.cybus.io/wp-content/uploads/2019/03/Cybus-logo-Claim-lang.svg

 provider: Cybus GmbH

 homepage: https://www.cybus.io

Parameters

Parameters allow the user to prepare commissioning files for multiple use cases by referring to them from
within the commissioning file. Every time a commissioning file is applied or a service reconfigured in the
Connectware, the user is asked to enter custom values for the parameters or to confirm the default values.

parameters:

 agentId:

 type: string

 description: Agent Identification (Cybus Heidenhain Agent)

 default: <yourAgentId>

 machineIP:

 type: string

 description: IP Address of the machine

 default: <yourMachineAddress>

 cncType:

 type: string

 default: tnc640

 description: >-

 Type of the machine control (DNC Type). Allowed values: tnc640, itnc530,

 itnc426.

 allowedValues:

6 www.cybus.io

Cybus Learn > Build and improve

 - tnc640

 - itnc530

 - tnc426

The parameters we define here could vary from setup to setup, so it is just good to make them configurable.
The agentId is the name of the agent's user in the Connectware, which was defined during client registration.
The machineIP in our example is the address of the Windows machine running the TNC 640 emulator or
would be the address of the machine tool you want to connect to. As parameter cncType we define the type
of controller we use and additionally we define the currently supported controller types as allowedValues
for this parameter.

Resources

In the resources section we declare every resource that is needed for our application. For details about the
different resource types and available protocols, please consult the Cybus Docs.

Connection

The first resource we need is a connection to the Heidenhain controller. The connection is defined by its type
and its type-specific properties. In case of Cybus::Connection we declare which protocol and
connection parameters we want to use. For the definition of our connection we reference the earlier declared
parameters agentId, machineIP and cncType by using !ref.

resources:

 heidenhainConnection:

 type: 'Cybus::Connection'

 properties:

 protocol: Heidenhain

 connection:

 agent: !ref agentId

 ipAddress: !ref machineIP

 cncType: !ref cncType

 plcPassword: <password>

 usrPassword: <password>

 tablePassword: <password>

 sysPassword: <password>

https://docs.cybus.io/latest/user/services/structure/index.html

7 www.cybus.io

Cybus Learn > Build and improve

The access to your TNC 640 controller is restricted by four preconfigured passwords. If you need help to find
out the necessary passwords, feel free to contact our Support Team. For ITNC 530 and TNC 426 no password
is required.

Endpoints

The next resources needed are the endpoints which will provide or accept data. All endpoints have some
properties in common, namely the protocol defined as Heidenhain, the connection which is
referenced to the previously defined connection resource using !ref and the optional topic defining on
which MQTT topic the result will be published. In the default case the full endpoint topic will expand to
services/<serviceId>/<topic>. For more information on that, please consult the Cybus Docs.

The endpoints will make use of the methods we selected earlier. Those methods are all a bit different so let's
take a look at each of the endpoint definitions.

 getStatePolling:

 type: 'Cybus::Endpoint'

 properties:

 protocol: Heidenhain

 connection: !ref heidenhainConnection

 topic: getState

 subscribe:

 method: getState

 type: poll

 pollInterval: 5000

 params: []

The first endpoint makes use of the method: getState, which requests the current machine state. The
result should be published on the topic: getState. This endpoint is defined with the property subscribe,
which in the context of a Heidenhain connection means, that it will request the state in frequency of the
defined pollInterval. This is also known as polling and brings us to the definition of the type which
therefore is poll.

 getState:

 type: 'Cybus::Endpoint'

 properties:

 protocol: Heidenhain

 connection: !ref heidenhainConnection

mailto:mailto:support%40cybus.io?subject=
mailto:https://docs.cybus.io/latest/user/services/structure/resources/endpoint.html%23topic?subject=

8 www.cybus.io

Cybus Learn > Build and improve

 topic: getState

 read:

 method: getState

But we could also make use of the method getState by requesting the state only once when it is called.
The definition of this endpoint differs from the previous in the property read instead of subscribe.
To utilize this endpoint and call the method, you need to publish an MQTT message to the topic
services/<serviceId>/<topic>/req. The result of the method will be published on the topic
services/<serviceId>/<topic>/res. <topic> has to be replaced with the topic we defined for
this endpoint, namely getState. The serviceId will be defined during the installation of the service and
can be taken from the services list in the Connectware Admin UI.

getToolTableRow:

 type: 'Cybus::Endpoint'

 properties:

 protocol: Heidenhain

 connection: !ref heidenhainConnection

 topic: getToolTableRow

 read:

 method: getToolTableRow

The previously used method getState did not expect any arguments so we could just call it by issuing
an empty message on the req topic. The method getToolTableRow is used to request a specific row of
the tool table. To specify which row should be requested, we need to supply the toolId. We will look at an
example of this method call in the last section of the article.

 getPlcData:
 type: 'Cybus::Endpoint'

 properties:

 protocol: Heidenhain

 connection: !ref heidenhainConnection

 topic: getPlcData

 read:

 method: getPlcData

Using the method getPlcData allows us to request data stored on any memory address of the controller.
The arguments that must be handed over are the memoryType and the memoryAddress.

9 www.cybus.io

Cybus Learn > Build and improve

 transmitFile:
 type: 'Cybus::Endpoint'

 properties:

 protocol: Heidenhain

 connection: !ref heidenhainConnection

 topic: transmitFile

 read:

 method: transmitFile

The method transmitFile allows us to transmit a file in the form of a base64-encoded buffer to a
destination path on the Heidenhain controller. It expects two arguments: the string fileBuffer and another
string destinationPath.

 onToolTableChanged:
 type: 'Cybus::Endpoint'

 properties:

 protocol: Heidenhain

 connection: !ref heidenhainConnection

 topic: notify/onToolTableChanged

 subscribe:

 type: notify

 method: onToolTableChanged

The last endpoint we define calls the method onToolTableChanged. This is an event method which will
send a notification in case of a changed tool table. For this we have to use the property subscribe along
with the type notify. This means that we are not polling the method in this context but subscribe to it and
wait for a notification on the specified topic. We could trigger a notification by modifying the tool table in
the TNC emulator.

Installing the Commissioning File

You now have the commissioning file ready for installation. Head over to the Services tab in the Connectware
Admin UI and hit the (+) button to select and upload the commissioning file. You will be asked to specify
values for each member of the section parameters or confirm the default values. With a proper written
commissioning file, the confirmation of this dialog will result in the installation of a service, which manages
all the resources we just defined: The connection to the Heidenhain controller and the endpoints collecting
data from the controller. After enabling this service you are good to go on and see if everything works out!

10 www.cybus.io

Cybus Learn > Build and improve

How do all the components we installed and defined so far now work together?

The Heidenhain agent running on the Windows machine tries to connect to the Connectware at the IP address,
that was defined during its installation, as soon as it is started. We recognized these connection attempts
when we opened the Connectware client registry and accepted the request of the Heidenhain agent with the
name heidenhain-<windows-pc-hostname>. As a result a user with this name was created in the
Connectware. We manually assigned this user the role heidenhainagent and through that granted the
permission to access the MQTT topic for data exchange.

After the installation of the service in the Connectware it tries to establish the Heidenhain connection we
declared in the resources section of the commissioning file. There we have defined the name of the Heidenhain
agent and the IP address of the Heidenhain controller to connect to – or in our case of the emulator, which
runs on the same machine as the agent. (Working with a real machine controller that would obviously not
be the case.) As soon as the connection to the Heidenhain controller is established the service enables the
endpoints which rely on the method calls issued by the agent to the Heidenhain controller via RPC. To address
multiple Heidenhain controllers we could utilize the same agent but need to specify separate connection
resources for each of them.

11 www.cybus.io

Cybus Learn > Build and improve

Verifying the Connection

Now that we have a connection established between the Heidenhain controller and the Connectware, we can
go to the Explorer tab of the Admin UI, where we see a tree structure of our newly created datapoints. Since
we subscribed to the method getState, we should already see data being polled and published on this
topic. Find the topic getState under services/heidenhaindncexample, hover it and click the eye
icon on the right – this activates the live view and you should see data coming in.

On MQTT topics the data is provided in JSON format and applications consuming the data must take care of
JSON parsing to pick the desired properties.

To utilize a method that expects arguments you would issue a request by publishing a message on the
belonging req topic with the arguments as payload. For example to use the endpoint getToolTableRow
you could publish the following message to request the tool information of tool table ID 42:

{

 "id": "1",

 "params": ["42"]

}

The payload must be a valid JSON object and can contain two properties:
• id: (optional) User-defined correlation ID which can be used to identify the response. If this property was

given, its value will be returned in the return message
• params: Array of parameters required for the used method. If the method requires no parameters, this

property is optional, too.

The arguments required for each call are listed along with the methods in the Cybus Docs.

The answer you would receive to this method call could look as follows:

mailto:https://docs.cybus.io/latest/user/protocols/heidenhain.html%23heidenhain-methods?subject=

12 www.cybus.io

Cybus Learn > Build and improve

{

 "timestamp":1598534586513,

 "result":

 {

 "CUR_TIME":"0",

 "DL":"+0",

 "DR":"+0",

 "DR2":"+0",

 "L":"+90",

 "NAME":"MILL_D24_FINISH",

 "PLC":"%00000000",

 "PTYP":"0",

 "R":"+12",

 "R2":"+0",

 "T":"32",

 "TIME1":"0",

 "TIME2":"0"

 },

 "id":"1"

}

To learn how you can easily test and interact with MQTT topics like in this example, check out the article How
to connect MQTT clients. Utilizing the Workbench you could simply hit Import from the menu in the upper
right corner and paste the following JSON to add the test flow shown below. Add your MQTT credentials to
the purple subscribe and publish nodes, then trigger requests.

[{"id":"cba40915.308b38","type":"tab","label":"Heidenhain DNC Demo","disabl

ed":false,"info":""},{"id":"bc623e05.ae0f7","type":"inject","z":"cba40915.3

08b38","name":"Trigger \"getState\" request (see here for payload)","props"

:[{"p":"payload"},{"p":"topic","vt":"str"}],"repeat":"","crontab":"","once"

:false,"onceDelay":0.1,"topic":"","payload":"{\"id\":\"1\",\"params\":[]}",

"payloadType":"json","x":240,"y":200,"wires":[["aff3fdcf.d275d","9fd44184.a1

1d1"]]},{"id":"f450d307.396ee","type":"comment","z":"cba40915.308b38","nam

e":"Demo for Cybus Learn Article \"How to connect a machine via Heidenhain

DNC interface\"","info":"","x":360,"y":60,"wires":[]},{"id":"aff3fdcf.

d275d","type":"mqtt out","z":"cba40915.308b38","name":"","topic":"services/

heidenhaindncexample/getState/req","qos":"0","retain":"false","broker":"b783

mailto:https://www.cybus.io/learn/how-to-cconnect-an-mqtt-client-to-publish-and-subscribe-data/?subject=
mailto:https://www.cybus.io/learn/how-to-cconnect-an-mqtt-client-to-publish-and-subscribe-data/?subject=

13 www.cybus.io

Cybus Learn > Build and improve

2f1d.e9d4e","x":630,"y":200,"wires":[]},{"id":"ddec5b0c.c0c418","type":"mqtt

in","z":"cba40915.308b38","name":"","topic":"services/heidenhaindncexample/

getState/res","qos":"0","datatype":"auto","broker":"b7832f1d.e9d4e","x":23

0,"y":300,"wires":[["e1df9994.c3edc8"]]},{"id":"21f886a8.ac3a2a","type":"d

ebug","z":"cba40915.308b38","name":"","active":true,"tosidebar":true,"cons

ole":false,"tostatus":false,"complete":"false","statusVal":"","statusType

":"auto","x":650,"y":300,"wires":[]},{"id":"dc2c1840.954bb8","type":"comm

ent","z":"cba40915.308b38","name":"getState request","info":"","x":140,"y

":160,"wires":[]},{"id":"668e0f37.4f5","type":"comment","z":"cba40915.308

b38","name":"getState response","info":"","x":150,"y":266,"wires":[]},{"i

d":"ec1150ad.7a23d","type":"inject","z":"cba40915.308b38","name":"Trigger

\"getToolTableRow\" request (see here for payload)","props":[{"p":"payload"

},{"p":"topic","vt":"str"}],"repeat":"","crontab":"","once":false,"onceDela

y":0.1,"topic":"","payload":"{\"id\":\"2\",\"params\":[\"42\"]}","payloadTy

pe":"json","x":270,"y":498,"wires":[["d317feb3.3eb0b","4c3ab86e.f653b8"]]},

{"id":"d317feb3.3eb0b","type":"mqtt out","z":"cba40915.308b38","name":"","t

opic":"services/heidenhaindncexample/getToolTableRow/req","qos":"0","retai

n":"false","broker":"b7832f1d.e9d4e","x":720,"y":498,"wires":[]},{"id":"5a

2f9aca.f82724","type":"mqtt in","z":"cba40915.308b38","name":"","topic":"s

ervices/heidenhaindncexample/getToolTableRow/res","qos":"0","datatype":"au

to","broker":"b7832f1d.e9d4e","x":260,"y":600,"wires":[["3ad07f7c.3bf85"]]

},{"id":"b888e063.a8f84","type":"debug","z":"cba40915.308b38","name":"","a

ctive":true,"tosidebar":true,"console":false,"tostatus":false,"complete":"

false","statusVal":"","statusType":"auto","x":710,"y":600,"wires":[]},{"id

":"65db090f.922aa8","type":"comment","z":"cba40915.308b38","name":"getTool

TableRow request","info":"","x":170,"y":458,"wires":[]},{"id":"23d593fd.e8

52ac","type":"comment","z":"cba40915.308b38","name":"getToolTableRow respo

nse","info":"","x":170,"y":564,"wires":[]},{"id":"3ad07f7c.3bf85","type":"

json","z":"cba40915.308b38","name":"","property":"payload","action":"","pr

etty":false,"x":550,"y":600,"wires":[["b888e063.a8f84"]]},{"id":"e1df9994.

c3edc8","type":"json","z":"cba40915.308b38","name":"","property":"pay

load","action":"","pretty":false,"x":490,"y":300,"wires":[["21f886a8.

ac3a2a"]]},{"id":"9fd44184.a11d1","type":"debug","z":"cba40915.308b38","nam

e":"","active":true,"tosidebar":true,"console":false,"tostatus":false,"comp

lete":"false","statusVal":"","statusType":"auto","x":530,"y":160,"wires":[]

},{"id":"4c3ab86e.f653b8","type":"debug","z":"cba40915.308b38","name":"","a

ctive":true,"tosidebar":true,"console":false,"tostatus":false,"complete":"f

alse","statusVal":"","statusType":"auto","x":590,"y":460,"wires":[]},{"id":

14 www.cybus.io

Cybus Learn > Build and improve

"b7832f1d.e9d4e","type":"mqtt-broker","z":"","name":"Connectware","broker":

"connectware","port":"1883","clientid":"","usetls":false,"compatmode":false

,"keepalive":"60","cleansession":true,"birthTopic":"","birthQos":"0","birth

Payload":"","closeTopic":"","closeQos":"0","closePayload":"","willTopic":""

,"willQos":"0","willPayload":""}]

Summary

In this article we went through the process of setting up a connection between a Heidenhain controller and
the Cybus Connectware via the Heidenhain DNC interface. This required the Cybus Heidenhain agent to
translate between the Connectware and Heidenhain DNC by making use of the RemoTools SDK. We wrote
the commissioning file that set up the Connectware service which connected to an emulated instance of
a TNC 640 and requested and received information about the tool with ID 42. This or any other data from
the Heidenhain DNC interface could now securely be vertically integrated along with data from any other
interface through the unified API of the Connectware.

Where to go from here

The Connectware offers powerful features to build and deploy applications for gathering, filtering, forwarding,
monitoring, displaying, buffering, and all kinds of processing data… why not build a dashboard, for instance?
For guides check out more of Cybus Learn.

mailto:https://cybus.io/learn?subject=

15 www.cybus.io

Cybus Learn > Build and improve

Cybus is a specialist for secure IIoT Edge software, headquartered in Germany. Cybus Connectware serves smart factories

as a universal Edge and DevOps hub. Machine builders and providers of IIoT services use the Cybus Connectware as

a software-based gateway. As early as 2017, Cybus published the first secure industrial connector for machine data

according to today‘s DIN SPEC 27070 standard. Industry analyst Gartner named Cybus a worldwide "Cool Vendor".

Today, the company counts medium-sized and large companies from numerous industrial sectors such as mechanical

engineering, automotive and aviation among its customers.

Cybus GmbH · Osterstraße 124 · 20255 Hamburg · Germany · www.cybus.io · hello@cybus.io · (+49) 40 228 58 68 51

