
1 www.cybus.io

Cybus Learn > Build and improve

How to Connect and Integrate a Modbus/TCP Server
by David Schmeding

Prerequisites

This lesson assumes that you want to integrate the Modbus/TCP protocol with the Cybus Connectware.
To understand the basic concepts of the Connectware, please check out the Technical Overview lesson. To
follow along with the example, you will also need a running instance of the Connectware. If you don’t have
that, learn How to install the Connectware. Although we focus on Modbus/TCP here, we will ultimately access
all data via MQTT. So you should also be familiar with MQTT. If in doubt, head over to our MQTT Basics lesson.

Introduction

This article will teach you the integration of Modbus/TCP servers. In more detail, the following topics are
covered:
• Identifying Modbus datapoints
• Creating the Commissioning File
• Installing the Service via the Connectware Admin UI
• Verifying data in the Connectware Explorer
The Commissioning Files used in this lesson are made available in the Example Files Repository on GitHub.

Example Setup

For this example we presume that we have a device of the type Janitza UMG 604-EP PRO installed on our
Ethernet network. This is a device for measuring and analyzing the electric power quality, which is equipped
with a Modbus/TCP server.

Determining the datapoints

This device offers a lot of power analysis data you can access via Modbus, ranging over some thousands of
address points. Although there is such a lot of interesting data, we assume that we just want to know the
actual day of month, which is also provided and the real powers of L1-L3 as well as the utility frequency.
Examining the Modbus adress-list for UMG 604-PRO, we find the following addresses representing the date
and time:

https://www.cybus.io/learn/connectware-technical-overview/
https://www.cybus.io/learn/installing-the-connectware/
https://www.cybus.io/learn/mqtt-basics/
https://github.com/cybusio/example-how-to-connect-and-integrate-a-modbustcp-server
https://www.janitza.com/umg-605-pro.html
https://www.janitza.com/umg-604-pro-downloads.html?file=files/download/manuals/current/UMG604-PRO/janitza-mal-umg604pro-en.pdf

2 www.cybus.io

Cybus Learn > Build and improve

| Address | Format | Designation | Unit | Remarks |

|---------|--------|-------------|------|----------------------------|

| 0 | long64 | _REALTIME | 2 ns | Time (UTC) |

| 4 | int | _SYSTIME | sec | Time (UTC) |

| 6 | short | _DAY | | Day (1 .. 31) |

| 7 | short | _MONTH | | Month (0=Jan, .. 11=Dec) |

| 8 | short | _YEAR | | Year |

| 9 | short | _HOUR | h | Hour (1 .. 24) |

| 10 | short | _MIN | min | Minute (1 .. 59) |

| 11 | short | _SEC | s | Second (1 .. 59) |

| 12 | short | _WEEKDAY | | Weekday , (0=Sun .. 6=Sat) |

We also find the following addresses representing frequently required readings:

| Address | Format | Designation | Unit | Remarks |

|---------|--------|---------------|------|--------------------------------------|

| 19000 | float | _G_ULN[0] | V | Voltage L1-N |

| 19002 | float | _G_ULN[1] | V | Voltage L2-N |

| 19004 | float | _G_ULN[2] | V | Voltage L3-N |

| 19006 | float | _G_ULL[0] | V | Voltage L1-L2 |

| 19008 | float | _G_ULL[1] | V | Voltage L2-L3 |

| 19010 | float | _G_ULL[2] | V | Voltage L3-L1 |

| 19012 | float | _G_ILN[0] | A | Apparent current, L1-N |

| 19014 | float | _G_ILN[1] | A | Apparent current, L2-N |

| 19016 | float | _G_ILN[2] | A | Apparent current, L3-N |

| 19018 | float | _G_I_SUM3 | A | Vector sum; IN=I1+I2+I3 |

| 19020 | float | _G_PLN[0] | W | Real power L1-N |

| 19022 | float | _G_PLN[1] | W | Real power L2-N |

| 19024 | float | _G_PLN[2] | W | Real power L3-N |

| 19026 | float | _G_P_SUM3 | W | Psum3=P1+P2+P3 |

| 19028 | float | _G_SLN[0] | VA | Apparent power L1-N |

| 19030 | float | _G_SLN[1] | VA | Apparent power L2-N |

| 19032 | float | _G_SLN[2] | VA | Apparent power L3-N |

| 19034 | float | _G_S_SUM3 | VA | Sum; Ssum3=S1+S2+S3 |

| 19036 | float | _G_QLN[0] | var | Reactive power L1 (fundamental comp.) |

| 19038 | float | _G_QLN[1] | var | Reactive power L2 (fundamental comp.) |

| 19040 | float | _G_QLN[2] | var | Reactive power L3 (fundamental comp.) |

| 19042 | float | _G_Q_SUM3 | var | Qsum3=Q1+Q2+Q3 (fundamental comp.) |

3 www.cybus.io

Cybus Learn > Build and improve

| 19044 | float | _G_COS_PHI[0] | - | CosPhi; UL1 IL1 (fundamental comp.) |

| 19046 | float | _G_COS_PHI[1] | - | CosPhi; UL2 IL2 (fundamental comp.) |

| 19048 | float | _G_COS_PHI[2] | - | CosPhi; UL3 IL3 (fundamental comp.) |

| 19050 | float | _G_FREQ | Hz | Measured frequency |

In the documentation there is also a table defining the size and range of the terms used in the column Format,
which we will need for specifying our endpoints.

| Type | Size | Minimum | Maximum |

|--------|--------|----------|----------|

| char | 8 bit | 0 | 255 |

| byte | 8 bit | -128 | 127 |

| short | 16 bit | -2^15 | 2^15-1 |

| int | 32 bit | -2^31 | 2^31-1 |

| uint | 32 bit | 0 | 2^32-1 |

| long64 | 64 bit | -2^63 | 2^63-1 |

| float | 32 bit | IEEE 754 | IEEE 754 |

| double | 64 bit | IEEE 754 | IEEE 754 |

Writing the Commissioning File

The Commissioning File is a set of parameters which describes the resources that are necessary to collect
and provide all the data for our application. It contains information about all connections, data endpoints
and mappings and is read by the Connectware. To understand the file’s anatomy in detail, please consult
the Reference docs. To get started, open a text editor and create a new file, e.g. modbus-example-
commissioning-file.yml. The Commissioning File is in the YAML format, perfectly readable for human and
machine! We will now go through the process of defining the required sections for this example:
• Description
• Metadata
• Parameters
• Resources

Description and Metadata
These sections contain more general information about the commissioning file. You can give a short
description and add a stack of metadata. Regarding the metadata, only the name is required while the rest is
optional. We will just use the following set of information for this lesson:

https://docs.cybus.io/latest/user/services/structure/index.html

4 www.cybus.io

Cybus Learn > Build and improve

description: >

 Modbus/TCP Example Commissioning File

 Cybus Learn - How to connect and integrate an Modbus/TCP server

 https://learn.cybus.io/lessons/XXX/

metadata:

 name: Modbus/TCP Example Commissioning File

 version: 1.0.0

 icon: https://www.cybus.io/wp-content/uploads/2019/03/Cybus-logo-Claim-lang.svg

 provider: cybus

 homepage: https://www.cybus.io

Parameters
Parameters allow the user to customize Commissioning Files for multiple use cases by referring to them from
within the Commissioning File. Each time a Commissioning File is applied or reconfigured in the Connectware,
the user is asked to enter custom values for the parameters or to confirm the default values.

parameters:

 modbusHost:

 type: string

 description: Modbus/TCP Host

 default: 192.168.123.123

 modbusPort:

 type: integer

 default: 502

We are defining the host address details of our Modbus/TCP server as parameters, so they are used as default
but can be customized in case we want to connect to a different server.

Resources
In the resources section we declare every resource that is needed for our application. The first resource we
need is a connection to the Modbus/TCP server.

5 www.cybus.io

Cybus Learn > Build and improve

resources:

 modbusConnection:

 type: Cybus::Connection

 properties:

 protocol: Modbus

 connection:

 host: !ref modbusHost

 port: !ref modbusPort

After giving our resource a name – for the connection it is modbusConnection – we define the type of the
resource and its type-specific properties. In case of Cybus::Connection we declare which protocol and
connection parameters we want to use. For details about the different resource types and available protocols,
please consult the Reference docs. For the definition of our connection we reference the earlier declared
parameters modbusHost and modbusPort by using !ref.
The next resources needed are the datapoints that we have selected earlier. Let’s add those by extending our
list of resources with some endpoints.

 dayOfMonth:
 type: Cybus::Endpoint

 properties:

 protocol: Modbus

 connection: !ref modbusConnection

 subscribe:

 fc: 3

 length: 1

 interval: 2000

 address: 6

 dataType: int16BE

 realPowerL1:

 type: Cybus::Endpoint

 properties:

 protocol: Modbus

 connection: !ref modbusConnection

 subscribe:

 fc: 3

 length: 2

 interval: 2000

https://docs.cybus.io/latest/user/services/structure/index.html

6 www.cybus.io

Cybus Learn > Build and improve

 address: 19020

 dataType: floatBE

 realPowerL2:

 type: Cybus::Endpoint

 properties:

 protocol: Modbus

 connection: !ref modbusConnection

 subscribe:

 fc: 3

 length: 2

 interval: 2000

 address: 19022

 dataType: floatBE

 realPowerL3:

 type: Cybus::Endpoint

 properties:

 protocol: Modbus

 connection: !ref modbusConnection

 subscribe:

 fc: 3

 length: 2

 interval: 2000

 address: 19024

 dataType: floatBE

 frequency:

 type: Cybus::Endpoint

 properties:

 protocol: Modbus

 connection: !ref modbusConnection

 subscribe:

 fc: 3

 length: 2

 interval: 2000

 address: 19050

 dataType: floatBE

7 www.cybus.io

Cybus Learn > Build and improve

Each resource of the type Cybus::Endpoint needs a definition of the used protocol and on which connection
it is rooted. Here you can easily refer to the previously declared connection by using its name. Furthermore we
have to define which Modbus address the endpoint should read from or write to by giving the function code
fc, the length , the interval, the address and the dataType.

Function code
The function code fc defines the operation of the request. To learn more about the different codes and
their purpose, you can consult one of many sources on the web, e.g. Simply Modbus. However, the exact
implementation of the function codes may vary from manufacturer to manufacturer and is in some sources
described as „artistic freedom“ in designing their modbus devices. Which function code to use on which data
is therefore also depending on your device and its structure of register addressing, so also check out the
documentation of your device. For the device we utilize in this example, we can either use function code 3 or
4 to read the analogue values, so we just use 3.

Length
The length describes how many registers should be read starting at the specified address. The registers of a
modbus device have a length of 16 bits. Assuming we want to read the value of day of month, which is given
in the format „short“, we learn from the table defining the actual size of the formats, it has a size of 16 bits and
therefore a length of one register, so we define the property length as 1. For the other endpoints we define
the length as 2, since the format „float“ is 32 bits long, using two registers.

Interval
Optionally, we can define the poll interval in milliseconds, defining how frequently a value is requested
from the server, which is 1000 ms by default. To reduce the bandwidth demand we set the interval of our
endpoints to 2000 ms.

Address
We looked at the modbus address list of the device before and found the datapoints representing the day
of month on address 6 and the readings of real power L1-L3 on addresses 19020,19022 and 19024 and the
frequency on address 19050.

Data type
The property dataType is optional, but in fact you will get a buffer value in case you do not specify the data
type explicitly, which at first you would have to parse yourself. To avoid this, we define the data types for
the power values and frequency as floatBE, since from the address list we learned, those were in the format
"float" and the section "Byte sequence" of this document gives us the information "The addresses described
in this address list supply the data in the "Big-Endian" format.", which "BE" stands for.

http://www.simplymodbus.ca/FAQ.htm#FC

8 www.cybus.io

Cybus Learn > Build and improve

Looking at the endpoint „dayOfMonth“ we see, the format of its address is „short“, which corresponding to
the table of formats matches the size and range of a 16-bit integer data type. Following this, we define the
data type of the endpoint „dayOfMonth“ as int16BE. You can find all available data types for Modbus in the
Reference docs.

MQTT Mapping
To this point we are already able to read values from the Modbus/TCP server and monitor them in the
Connectware Explorer or on the default MQTT topics related to our service. To achieve a data flow that would
satisfy the requirements of our integration purpose, we may need to add a mapping resource to publish the
data on topics corresponding to our MQTT topic structure.

 mapping:

 type: Cybus::Mapping

 properties:

 mappings:

 - subscribe:

 endpoint: !ref dayOfMonth

 publish:

 topic: 'janitza/status/day'

 - subscribe:

 endpoint: !ref realPowerL1

 publish:

 topic: 'janitza/measurement/realpower/1'

 - subscribe:

 endpoint: !ref realPowerL2

 publish:

 topic: 'janitza/measurement/realpower/2'

 - subscribe:

 endpoint: !ref realPowerL3

 publish:

 topic: 'janitza/measurement/realpower/3'

 - subscribe:

 endpoint: !ref frequency

 publish:

 topic: 'janitza/measurement/frequency'

https://docs.cybus.io/latest/user/protocols/modbus.html#user-protocols-modbus-endpoint

9 www.cybus.io

Cybus Learn > Build and improve

In this case the mapping defines which endpoints value is published on which MQTT topic. In case you want to
perform a write operation to your device, you simply have to reverse the data flow and map it from the MQTT
topic to the according endpoint like this:

 - subscribe:

 topic: 'janitza/control/setvalue'

 publish:

 endpoint: !ref valueToSet

Then you can write to the endpoint by simply publishing on this MQTT topic. Please note that write messages
have to be in JSON format containing the value as follows:

{

 "value": true

}

This message has the obligatory key „value“, which can contain a value of any data type (which should match
the concerning endpoint): For instance boolean values just use true/false, integers are represented by
theirselves like 3, decimals similarly appear as 10.45 and strings are written in "quotes".

Installing the Commissioning File

You now have the Commissioning File ready for installation. Head over to the Services tab in the Connectware
Admin UI and hit the (+) button to select upload the Commissioning File. You will be asked to specify
values for each member of the section parameters or confirm the default values. With a proper written
Commissioning File, the confirmation of this dialog will result in the installation of a Service, which manages
all the resources we just defined: The connection to the Modbus/TCP server, the endpoints collecting data
from the server and the mapping controlling where we can access this data. After enabling this Service you
are good to go on and see if everything works out!

Verifying the data

Now that we have a connection established between the Modbus/TCP server and Connectware, we can go to
the Explorer tab, where we see a tree structure of our newly created datapoints. Hover an entry and select the
eye icon on the right – this activates the live view and you should see data coming in.

10 www.cybus.io

Cybus Learn > Build and improve

On MQTT topics the data is provided in JSON format and applications consuming the data must take care of
JSON parsing to pick the desired properties. Though this JSON structure is not represented by the Explorer
view. A string containing the actual date and time, provided on an MQTT topic in JSON format, could look as
follows:

{

 "value":"2020-07-14T11:43:06.632Z",

 "timestamp":1594726986632

}

11 www.cybus.io

Cybus Learn > Build and improve

Cybus is a specialist for secure IIoT Edge software, headquartered in Germany. Cybus Connectware serves smart factories

as a universal Edge and DevOps hub. Machine builders and providers of IIoT services use the Cybus Connectware as

a software-based gateway. As early as 2017, Cybus published the first secure industrial connector for machine data

according to today‘s DIN SPEC 27070 standard. Industry analyst Gartner named Cybus a worldwide "Cool Vendor“.

Today, the company counts medium-sized and large companies from numerous industrial sectors such as mechanical

engineering, automotive and aviation among its customers.

Cybus GmbH · Osterstraße 124 · 20255 Hamburg · Germany · www.cybus.io · hello@cybus.io · (+49) 40 228 58 68 51

Summary

Summarizing this lesson, at first we learned how to identify addresses of the desired data points in the address
list of our device along with definitions and conventions about their representation. Given that information,
we created a Commissioning File and installed the Service on the Connectware. In the Explorer we finally saw
the live data on corresponding MQTT topics and are now ready to go further with our Modbus integration.

Where to go from here

The Connectware offers powerful features to build and deploy applications for gathering, filtering, forwarding,
monitoring, displaying, buffering, and all kinds of processing data… why not build a dashboard for instance?
For guides check out more of Cybus Learn.

http://www.cybus.io/learn

