
1 www.cybus.io

Cybus Learn > Build and improve

How to connect and integrate an OPC UA server
by Marius Schmeding

Prerequisites

This lesson assumes that you want to integrate the OPC Unified Architecture (a.k.a OPC UA) protocol with
the Cybus Connectware. To understand the basic concepts of the Connectware, please checkout the Technical
Overview lesson. To follow along with the example, you will also need a running instance of the Connectware.
If you don’t have that, learn How to install the Connectware. Although we focus on OPC UA here, we will
ultimately access all data via MQTT. So you should also be familiar with MQTT. If in doubt, head over to our
MQTT Basics lesson.

Introduction

This article will teach you the integration of OPC UA servers. In more detail, the following topics are covered:
•	 Browsing the OPC UA address space
•	 Identifying OPC UA datapoints
•	 Specifying MQTT mappings
•	 Creating the Commissioning File
•	 Establishing a connection via the Connectware Admin UI
•	 Verifying data in the Connectware Explorer
The Commissioning Files used in this lesson are made available in the Example Files Repository on GitHub.

Selecting the tools

OPC UA server
Our example utilizes the public OPC UA server at opcuaserver.com. This makes it very easy to get started,
but please be warned, that a OPC UA server used in production should neither be exposed to the Internet, nor
should allow anonymous access. In case you bring your own device instead (e.g. a Simatic S7-1500 PLC),
that’s perfectly fine. If so, please make sure that a basic TCP connection is possible.

OPC UA browser
We will use FreeOpcUa’s Simple OPC UA GUI client for exploration in this guide. It is open source and available
for all major OSs. If you feel more comfortable working on the terminal, go for Etienne Rossignon’s opcua-
commander. Or, if you prefer online tools, try One-Way Automation’s OPC UA Web Client. It is free to use, but
will ask you to sign up first and you won’t be able to connect to servers on your local network. The choice is
yours.

https://www.cybus.io/learn/connectware-technical-overview/
https://www.cybus.io/learn/connectware-technical-overview/
https://www.cybus.io/learn/installing-the-connectware/
https://www.cybus.io/learn/mqtt-basics/
https://github.com/cybusio/example-how-to-connect-and-integrate-an-opcua-server
http://opcuaserver.com/
https://github.com/FreeOpcUa/opcua-client-gui
https://github.com/node-opcua/opcua-commander
https://github.com/node-opcua/opcua-commander
https://www.uaclient.com/

2 www.cybus.io

Cybus Learn > Build and improve

Exploring the OPC UA address space

Now that we have assembled all our tools, let’s get started! Run your OPC UA browser and connect to the
endpoint opc.tcp://opcuaserver.com:48010 (or whatever endpoint applies to you). Tada! – regardless
of the chosen server/client, the three characteristic root nodes Objects, Types, and Views should show up,
once the connection gets established. Explaining the OPC UA address space is certainly out of scope for this
lesson – so we will only deal with the Objects tree here. But if you want to go further, then the Address Space
Concepts documentation by Unified Automation is a good starting point.

Selecting datasource nodes

Go ahead and explore everything beneath Objects until you find the node displayed as CurrentTime. Select it

and take a look at the Attributes pane – according to the NodeClass attribute we are dealing with a Variable

here which implies, that there is a Value attribute as well. The Commissioning File, which we are about to

create in the next step, will deal with Variable nodes. They allow us to read and write data, depending on

their designated AccessLevel attribute.

Proceed now with a right click on CurrentTime and select subscribe to data change. The Subscriptions pane

then shows the actual value and it is updating at a fast rate.

http://documentation.unified-automation.com/uasdkhp/1.0.0/html/_l2_ua_address_space_concepts.html
http://documentation.unified-automation.com/uasdkhp/1.0.0/html/_l2_ua_address_space_concepts.html

3 www.cybus.io

Cybus Learn > Build and improve

Now we know, that Variable nodes in the OPC UA address space are the datasources, but to utilize them
with the Connectware, how do we reference them? There are two choices:

1.	 By NodeId, which is a node’s unique identifier. For example, the CurrentTime variable’s NodeId is
i=2258.

2.	 By BrowsePath, which is the path of BrowseName when you navigate the treeview. For example, the
CurrentTime variable’s BrowsePath assembles to /0:Objects/0:Server/0:ServerStatus/0:Cu
rrentTime.

Both approaches have their pros and cons. In general, the NodeId is less clumsy than the BrowsePath, but
also less descriptive. In this example, we prefer the NodeId and preserve some of the tree structure semantics
when we create the MQTT mappings.

Let’s pick some more variables from the address space. Below you find a table of all the variables and their
relevant data that will be used in the example. Pay attention to the last variable in the table. The Temperature
Setpoint not only allows us to read data, but to also write data! That’s pretty cool, since we can actually
control something.

4 www.cybus.io

Cybus Learn > Build and improve

Writing the Commissioning File

The Commissioning File contains all connection and mapping parameters and is read by the Connectware.
To understand the file’s anatomy in detail, please consult to the Reference docs. To get started, open a text
editor and create a new file, e.g. opcua-example-commissioning-file.yml. The Commissioning File is in
the YAML format, perfectly readable for human and machine! We will now go through the process of defining
the required sections for this example:
•	 Description
•	 Metadata
•	 Parameters
•	 Resources

Description and Metadata
These sections contain more general information about the commissioning file. You can give a short
description and add a stack of metadata. Regarding the metadata, only the name is required while the rest is
optional. We will just use the following set of information for this lesson:

description: >

 OPC UA Example Commissioning File

 Cybus Learn - How to connect and integrate an OPC UA server

 https://learn.cybus.io/lessons/how-to-connect-and-integrate-an-opcua-server/

metadata:

 name: OPC UA Example Commissioning File

 version: 1.0.1

 icon: https://www.cybus.io/wp-content/uploads/2019/03/Cybus-logo-Claim-lang.svg

 provider: cybus

 homepage: https://www.cybus.io

https://docs.cybus.io/latest/user/services/structure/index.html

5 www.cybus.io

Cybus Learn > Build and improve

Parameters
Parameters allow the user to customize Commissioning Files for multiple use cases by referring to them from
within the Commissioning File. Each time a Commissioning File is applied or reconfigured in the Connectware,
the user is asked to enter custom values for the parameters or to confirm the default values.
parameters:

 opcuaHost:

 type: string

 description: OPC UA Host Address

 default: opcuaserver.com

 opcuaPort:

 type: integer

 description: OPC UA Host Port

 default: 48010

We are defining the host address details of our OPC UA server as parameters, so they are used as default, but
can be customized in case we want to connect to a different server.

Resources
In the resources section we declare every resource that is needed for our application. The first resource we
need is a connection to the OPC UA server.

	 Cybus::Connection

resources:

 opcuaConnection:

 type: Cybus::Connection

 properties:

 protocol: Opcua

 connection:

 host: !ref opcuaHost

 port: !ref opcuaPort

 #username: myUsername

 #password: myPassword

6 www.cybus.io

Cybus Learn > Build and improve

After giving our resource a name – for the connection it is opcuaConnection – we define the type of the
resource and its type-specific properties. In case of Cybus::Connection we declare which protocol and
connection parameters we want to use. For details about the different resource types and available protocols,
please consult the Reference docs. For the definition of our connection we reference the earlier declared
parameters opcuaHost and opcuaPort by using !ref. If you are using a username and password, you could
also create parameters, to make them configurable. In our case the server does not require credentials.

Cybus::Endpoint
The next resources needed are the datapoints that we have selected earlier. Let’s add each OPC UA node by
extending our list of resources with some endpoints.

 currentTime:
 type: Cybus::Endpoint

 properties:

 protocol: Opcua

 connection: !ref opcuaConnection

 subscribe:

 nodeId: i=2258

 Humidity:

 type: Cybus::Endpoint

 properties:

 protocol: Opcua

 connection: !ref opcuaConnection

 subscribe:

 browsePath: /0:Objects/3:BuildingAutomation/3:AirConditioner_1/3:Humidity

 PowerConsumption:

 type: Cybus::Endpoint

 properties:

 protocol: Opcua

 connection: !ref opcuaConnection

 subscribe:

 nodeId: ns=3;s=AirConditioner_1.PowerConsumption

https://docs.cybus.io/latest/user/services/structure/index.html

7 www.cybus.io

Cybus Learn > Build and improve

 Temperature:

 type: Cybus::Endpoint

 properties:

 protocol: Opcua

 connection: !ref opcuaConnection

 subscribe:

 nodeId: ns=3;s=AirConditioner_1.Temperature

 TemperatureSetpointSub:

 type: Cybus::Endpoint

 properties:

 protocol: Opcua

 connection: !ref opcuaConnection

 subscribe:

 nodeId: ns=3;s=AirConditioner_1.TemperatureSetPoint

 TemperatureSetpointWrite:

 type: Cybus::Endpoint

 properties:

 protocol: Opcua

 connection: !ref opcuaConnection

 write:

 browsePath: /0:Objects/3:BuildingAutomation/3:AirConditioner_1/3:TemperatureSetPoint

Each resource of the type Cybus::Endpoint needs a definition of the used protocol and on which connection
it is rooted. Here you can easily refer to the previously declared connection by using its name. Furthermore
we have to define to which OPC UA node the endpoint should subscribe or write by giving the nodeId or the
browsePath.

Cybus::Mapping
To this point we are already able to read values from the OPC UA server and monitor them in the Connectware
Explorer or on the default MQTT topics related to our service. To achieve a data flow that would satisfy the
requirements of our integration purpose, we may need to add a mapping resource to publish the data on
topics corresponding to our MQTT topic structure.
 mapping:

8 www.cybus.io

Cybus Learn > Build and improve

 type: Cybus::Mapping

 properties:

 mappings:

 - subscribe:

 endpoint: !ref currentTime

 publish:

 topic: 'server/status/currenttime'

 - subscribe:

 endpoint: !ref Humidity

 publish:

 topic: 'building-automation/airconditioner/1/humidity'

 - subscribe:

 endpoint: !ref PowerConsumption

 publish:

 topic: 'building-automation/airconditioner/1/power-consumption'

 - subscribe:

 endpoint: !ref Temperature

 publish:

 topic: 'building-automation/airconditioner/1/temperature'

 - subscribe:

 endpoint: !ref TemperatureSetpointSub

 publish:

 topic: 'building-automation/airconditioner/1/temperature-setpoint'

 - subscribe:

 topic: 'building-automation/airconditioner/1/temperature-setpoint/set'

 publish:

 endpoint: !ref TemperatureSetpointWrite

In this case the mapping defines which endpoints value is published on which MQTT topic. But as you may
have noticed already, the Temperature Setpoint mapping is a bit different from the previous ones – here we
have two endpoints: One monitoring the variable and the other writing to the variable, when a new setpoint
is received via MQTT. To make the write operation work, we simply have to reverse the data flow and map it
from the MQTT topic to the according endpoint. Then you can write to the endpoint by simply publishing on
this MQTT topic. Please note that write messages have to be in JSON format containing the value as follows:

{

 "value": true

}

9 www.cybus.io

Cybus Learn > Build and improve

This message has the obligatory key „value“, which can contain a value of any data type (which should match
the concerning endpoint): For instance boolean values just use true/false, integers are represented by
theirselves like 3, decimals similarly appear as 10.45 and strings are written in "quotes".

Installing the Commissioning File

You now have the Commissioning File ready for installation. Head over to the Services tab in the Connectware
Admin UI and hit the (+) button to select upload the Commissioning File. You will be asked to set values for
each member of the section parameters or confirm the default values. With a proper written Commissioning
File, the confirmation of this dialog will result in the installation of a Service, which manages all the resources
we just defined: The connection to the OPC server, the endpoints collecting data from the server and the
mapping controlling where we can access this data. After enabling this Service you are good to go on and see
if everything works out!

Verifying the data
Now that we have a connection established between OPC UA server and Connectware, we can go to the
Explorer tab, where we see a tree structure of our newly created datapoints. Hover an entry and select the
eye icon on the right – this activates the live view and you should see data coming in.

On MQTT topics the data is provided in JSON format and applications consuming the data must take care of
JSON parsing to pick the desired properties. Though this JSON structure is not represented by the Explorer
view. Taking our currentTime topic as an example, the raw output would look as follows:

10 www.cybus.io

Cybus Learn > Build and improve

Cybus is a specialist for secure IIoT Edge software, headquartered in Germany. Cybus Connectware serves smart factories

as a universal Edge and DevOps hub. Machine builders and providers of IIoT services use the Cybus Connectware as

a software-based gateway. As early as 2017, Cybus published the first secure industrial connector for machine data

according to today‘s DIN SPEC 27070 standard. Industry analyst Gartner named Cybus a worldwide "Cool Vendor“.

Today, the company counts medium-sized and large companies from numerous industrial sectors such as mechanical

engineering, automotive and aviation among its customers.

Cybus GmbH · Osterstraße 124 · 20255 Hamburg · Germany · www.cybus.io · hello@cybus.io · (+49) 40 228 58 68 51

{

 "value":"2020-07-14T11:43:06.632Z",

 "timestamp":1594726986632

}

Summary

We learned quite a few things here. First, we used an OPC UA client application to browse the address space.
This enabled us to pick the variables of our interest and reference them by their NodeId, or by BrowsePath.
Given that information, we created a Commissioning File and installed the Service on the Connectware. In the
Explorer we finally saw the live data on corresponding MQTT topics and are now ready to go further with our
OPC UA integration.

Where to go from here

The Connectware offers powerful features to build and deploy applications for gathering, filtering, forwarding,
monitoring, displaying, buffering, and all kinds of processing data… why not build a dashboard for instance?
For guides checkout more of Cybus Learn.

https://cybus.io/learn

