
1 www.cybus.io

Cybus Learn > Build and improve

How to set up the integrated Connectware OPC UA server	
by David Schmeding

Prerequisites
This lesson assumes that you want to set up an OPC Unified Architecture (a.k.a OPC UA) server as an
integrated Connectware resource which other clients can connect to. To understand the basic concepts of
the Connectware, please take a look at the Technical Overview lesson.
To follow along with the example, you will need a running instance of the Connectware 1.0.18 or later. In case
you do not have that, learn How to install the Connectware.
In this article we will create a Connectware service which configures and enables the OPC UA server. If you
are new to services and creating commissioning files, read our article about Service Basics. If you would like
to set up the Connectware as an OPC UA client, please view the article How to Connect to an OPC UA Server.

Introduction
This article will teach you how to use the Connectware OPC UA server resource in your system setup. In more
detail, the following topics are covered:
•	 Including the server definition in your commissioning file
•	 Defining nodes and mappings
•	 Starting up the OPC UA server
•	 Using an external OPC UA client to connect to the server
The commissioning files used in this lesson are made available in the Example Files Repository on GitHub.

Selecting the tools
We will use Prosys OPC UA Client for testing in this guide. However, it is up to you to decide which tool to work
with. You can use FreeOpcUa’s Simple OPC UA GUI client, which is open source and available for all major
OS’s. If you feel more comfortable working on the terminal, go for Etienne Rossignon’s opcua-commander.
In case you prefer online tools, try One-Way Automation’s OPC UA Web Client. It is free to use, but you will be
asked to sign up first and you will not be able to connect to servers on your local network.

About the Connectware OPC UA server
Since the release of version 1.0.18, Connectware supports a new type of resource that can be utilized in
services: The server resource enables services to run servers within the Connectware and the first protocol
supported by this resource is OPC UA. Thus, you can set up an OPC UA server, which can be used to receive
data from or provide data to devices or applications mainly in industrial environments. Being fully integrated
into the Connectware, this feature allows to reduce the overheads in selecting, deploying, maintaining and
integrating a separate software for fulfilling this demand in your system.

https://www.cybus.io/learn/connectware-technical-overview/
https://www.cybus.io/learn/installing-the-connectware/
https://www.cybus.io/learn/service-basics/
https://www.cybus.io/learn/how-to-connect-and-integrate-an-opc-ua-server/
https://github.com/cybusio/example-how-to-set-up-the-opc-ua-serverhow-to-set-up-the-opc-ua-server
https://downloads.prosysopc.com/opc-ua-client-downloads.php
https://github.com/FreeOpcUa/opcua-client-gui
https://github.com/node-opcua/opcua-commander
https://www.uaclient.com/

2 www.cybus.io

Cybus Learn > Build and improve

The OPC UA server is internally connected to the Connectwares protocol mapper, which means that you can
map your data from any other protocol supported by the Connectware directly on data nodes of the OPC UA
server. In the service commissioning file, OPC UA server nodes can be handled just as any other endpoint.
Therefore, you can use them in mappings as usual by simply defining the data source and target.

Writing the Commissioning File
The Commissioning File contains all resource definitions and is read by the Connectware. To understand the
file’s anatomy in detail, please consult our Reference docs.
Start by opening a text editor and creating a new file, e.g. opcua-server-example-commissioning-file.yml. The
commissioning file is in the YAML format, perfectly readable for both humans and machines! We will now go
through the process of defining the required sections for this example.

Description and Metadata
These sections contain more general information about the commissioning file. You can give a short
description and add a stack of metadata. As for metadata, only the name is required, while the rest is optional.
We will use the following set of information for this lesson:

description: >

 OPC UA Server Example Commissioning File

 Cybus Learn - How to set up the integrated Connectware OPC UA server

 https://www.cybus.io/learn/how-to-set-up-the-integrated-connectware-opc-ua-

server/

metadata:

 name: OPC UA Server Example Commissioning File

 version: 1.0.0

 icon: https://www.cybus.io/wp-content/uploads/2019/03/Cybus-logo-Claim-

lang.svg

 provider: cybus

 homepage: https://www.cybus.io

Resources
In the resources section we declare every resource that is needed for our application. The first necessary
resource is the OPC UA server.

https://docs.cybus.io/latest/user/services/structure/index.html

3 www.cybus.io

Cybus Learn > Build and improve

Cybus::Server::Opcua

resources:

 opcuaServer:

 type: Cybus::Server::Opcua

 properties:

 port: 4841

 resourcePath: /UA/CybusOpcuaServer

 alternateHostname: localhost

 applicationUri: 'urn:cybus:opcua:server:1'

 allowAnonymous: true

 securityPolicies: ["None", "Basic256Sha256"]

 securityModes: ["None", "SignAndEncrypt"]

We create the OPC UA server by defining the type of the resource, namely Cybus::Server::Opcua. Then
we define its properties: we set the port to 4841 to not get in conflict with other possibly present OPC
UA servers. You can also set values for resourcePath, alternateHostname and applicationUri,
however in this case we proceed with the default ones. We set allowAnonymous to true, so we can
access the server without creating a user for this example. Note that this is not recommended for productive
environments. With securityPolicies and securityModes we can define the options that should be
supported by the server as an array.

Cybus::Node::Opcua
The next resources needed are the OPC UA server nodes. Let’s extend our list with some resources of the type
Cybus::Node::Opcua.

 1_root:

 type: Cybus::Node::Opcua

 properties:

 nodeType: Object

 parent: !ref opcuaServer

 nodeId: ns=1;s=1_root

 browseName: "root"

 1.1_DataNodes:

 type: Cybus::Node::Opcua

 properties:

4 www.cybus.io

Cybus Learn > Build and improve

 nodeType: Object

 parent: !ref 1_root

 nodeId: ns=1;s=1.1_DataNodes

 browseName: "DataNodes"

The node resources of the OPC UA server build up a hierarchy of objects and variables. We create two levels
of parent nodes here, which are of the nodeType Object. The first level is the root node. This has the server
itself as a parent and we reference the server resource by using !ref opcuaServer. The second level then
has the root as a parent, also defined by referencing. In this way, you can build up a hierarchy in which you
can then create your variable nodes.

 1.1.1_Boolean:
 type: Cybus::Node::Opcua

 properties:

 nodeType: Variable

 parent: !ref 1.1_DataNodes

 operation: serverProvides

 nodeId: ns=1;s=1.1.1_Boolean

 browseName: Boolean

 dataType: Boolean

 initialValue: false

 1.1.2_Int32:

 type: Cybus::Node::Opcua

 properties:

 nodeType: Variable

 parent: !ref 1.1_DataNodes

 operation: serverReceives

 nodeId: ns=1;s=1.1.2_Int32

 browseName: Int32

 dataType: Int32

 initialValue: 0

 1.1.3_String:

 type: Cybus::Node::Opcua

 properties:

 nodeType: Variable

 parent: !ref 1.1_DataNodes

5 www.cybus.io

Cybus Learn > Build and improve

 operation: serverProvidesAndReceives

 nodeId: ns=1;s=1.1.3_String

 browseName: String

 dataType: String

 initialValue: "intial"

The variable nodes are of the type Cybus::Node::Opcua as well, but their nodeType is Variable. As
a parent for our variables, we choose !ref 1.1_dataNodes. The operation which these nodes should
serve can be of three types: serverProvides, serverReceives and serverProvidesAndReceives.
serverProvides is a node which provides data and can be read by the OPC UA client. serverReceives is a
node that receives data from an OPC UA client, while serverProvidesAndReceives nodes can be used
in both ways. Furthermore, we choose a dataType for every variable and an initialValue which is the
value present on the node after the server has started.

For all nodes in this section we defined a nodeId and a browseName, which can be used to address the
nodes. The node ID must be unique on the server. The browse name can be used multiple times, but any
browse path derived from it must be unique. However, explaining the OPC UA address space is certainly out
of scope for this lesson. If you would like to learn more about the concepts of the OPC UA address space, then
the Address Space Concepts documentation by Unified Automation will be a good place to start.

Cybus::Mapping
At this point we would already be able to read and write values to the OPC UA server utilizing OPC UA clients.
However, to transfer data from devices or applications using other protocols to the OPC UA server, we have to
create a mapping. This will allow us to forward data from any other protocol to be provided through the OPC
UA server, or conversely, forward data received through the OPC UA server to any other protocol.

 MqttMapping:

 type: Cybus::Mapping

 properties:

 mappings:

 - subscribe:

 topic: "opcua/provides/boolean"

 publish:

 endpoint: !ref 1.1.1_Boolean

 - subscribe:

 endpoint: !ref 1.1.2_Int32

 publish:

 topic: "opcua/receives/int32"

http://documentation.unified-automation.com/uasdkhp/1.0.0/html/_l2_ua_address_space_concepts.html

6 www.cybus.io

Cybus Learn > Build and improve

 - subscribe:

 endpoint: !ref 1.1.3_String

 publish:

 topic: "opcua/receives/string"

 - subscribe:

 topic: "opcua/provides/string"

 publish:

 endpoint: !ref 1.1.3_String

In this case we want to provide the boolean values published on the MQTT topic opcua/provides/
boolean, which will be provided on the OPC UA server node 1.1.1_Boolean. We will achieve this by
referencing the node using !ref. Furthermore, we want the values received by the OPC UA node 1.1.2_
Int32 to be published on MQTT topic opcua/receives/int32. To be able to use 1.1.3_String in
both directions, we need to create two mappings: one to publish received values on opcua/receives/
string and one to provide values published on opcua/provides/string to the OPC UA clients.
Instead of publishing or subscribing to MQTT topics, we could also reference endpoints on connections of
other protocols in the same way as we do it for the OPC UA server nodes.

Installing the Commissioning File
You now have the commissioning file ready for installation. Go to the Services tab in the Connectware Admin
UI and click the (+) button to select and upload the commissioning file. After confirming this dialog, the
service will be installed. On enabling the service, all the resources we just defined will be created: The OPC UA
server, the server nodes and the mapping. Once the service has been successfully enabled, you can go ahead
and see if everything works.

7 www.cybus.io

Cybus Learn > Build and improve

Verifying the data
Now that our OPC UA server is running, we can go to the Explorer tab, where the tree structure of our newly
created endpoints can be seen and the endpoints can be inspected. Hover over an entry and select the eye
icon on the right – this activates the live view.

We can now use the OPC UA client to connect to our server on port 4841. Since we configured it to accept
anonymous clients, we can just go ahead. If we wanted to allow access only to registered users, we would
create them in the Connectware user management. But for now, after connecting to our OPC UA server
anonymously, we can send data to the receiving variable nodes. In the Explorer view we can then see this
data being published on the MQTT topics, on which we mapped the OPC UA variable nodes.
Additionally utilizing an MQTT client, we could now subscribe to this data or also publish data on the topic
which is mapped on the providing variable nodes to send it to OPC UA clients. An easy way to experiment with
these possibilities is the Workbench. There you can also easily configure MQTT nodes for quick prototyping.
See our other articles to learn more about the Workbench.

Summary
Setting up an OPC UA server with a service commissioning file is quite simple. To adjust the server to suit your
needs, the configuration with the commissioning file offers various additional options which are described
in the Connectware Docs. Being integrated into the Connectware, this OPC UA server can also be directly
connected to the protocol mapper and through it to systems using other protocols.

https://docs.cybus.io/latest/user/protocols/opcuaServer.html

8 www.cybus.io

Cybus Learn > Build and improve

Cybus is a specialist for secure IIoT Edge software, headquartered in Germany. Cybus Connectware serves smart factories

as a universal Edge and DevOps hub. Machine builders and providers of IIoT services use the Cybus Connectware as

a software-based gateway. As early as 2017, Cybus published the first secure industrial connector for machine data

according to today‘s DIN SPEC 27070 standard. Industry analyst Gartner named Cybus a worldwide "Cool Vendor".

Today, the company counts medium-sized and large companies from numerous industrial sectors such as mechanical

engineering, automotive and aviation among its customers.

Cybus GmbH · Osterstraße 124 · 20255 Hamburg · Germany · www.cybus.io · hello@cybus.io · (+49) 40 228 58 68 51

Where to go from here
The Connectware offers powerful features to build and deploy applications for gathering, filtering, forwarding,
monitoring, displaying, buffering, and all kinds of processing data… why not build a dashboard, for instance?
For guidance, read more on Cybus Learn.

https://cybus.io/learn

