
1 www.cybus.io

Cybus Learn > Build and improve

Service Basics
by Jacob Evans

Prerequisites

It’s a good idea to make yourself familiar with the following topics before commencing this lesson:
• Connectware Technical Overview
• Docker Basics
• YAML file format
• MQTT

Introduction

This lesson will cover the basic concepts of Cybus Services and how they relate to the Connectware. We will
focus on how applications deployed as services can take advantage of the data broker for accessing output
from data sources on the Connectware, the management cluster for gaining access to that output and the
single entry point for providing new interfaces where users can take advantage of processed data.

What is a Service

While the Connectware gives interfaces for individually performing all actions (like managing users, setting
permissions, starting containerized applications, etc.) the idea of services is to bundle all this activities into
a single point of configuration and execution. This means that when a service is enabled it will perform a set
of operations on the Connectware and when disabled these operations will be removed. Below you will find
some examples of possible service use cases.

Preprocessing
Think of a simple machine that produces a metal part. Whether a metal part is being made at any one point
of time may not be the important but the average amount being made over a given time period may be useful
for knowing if the machine is underperforming. We can accomplish this by connecting the machine to the
Connectware, and then deploying a service along side that takes the raw data from the data broker, calculates
the average over a given period of time, then uploads the result to the data broker for some other application
to consume. This type of application is classified as a preprocessor as it allows us to perform some operation
on the data before it is consumed elsewhere.

Device controller
Think of a machine that drills holes in a piece of material. When the machine is drilling we want to set a lamp
to be green, when the machine is between drilling we want to set a lamp to be yellow and when the machine is

https://www.cybus.io/learn/connectware-technical-overview/
https://www.cybus.io/learn/docker-basics/
http://yaml.org/spec/1.2/spec.html#Introduction
https://www.cybus.io/learn/mqtt-basics/

2 www.cybus.io

Cybus Learn > Build and improve

powered off we want the light to be red. We can connect both the machine and the lamp to the Connectware,
then read the status of the machine from the data broker into a service. This service can perform a check on
the status and then write out to the data broker on a topic that controls the light to change colors. This type
of application is classified as a Device controller as we are using input data to write to a device connected to
the Connectware.

Data visualization
Think of an assembly line that outputs new products ready to be shipped. We can connect the sensors of
the assembly to the Connectware and build a service that provides a web dashboard which outputs different
graphs for the average output, speed, temperature and power used throughout the day. Administrators
can then sign in to the Connectware and view this dashboard to see the status of the assembly line. This
type of application is classified as a Data Visualization as it takes data from the Connectware and provides
visualizations to allow easier consumption of important data.

Much more
These are only a few examples of the types of services that Cybus Connectware can deploy. As you will see
below the Connectware is built on top of Docker, so as long as your application can be containerized it can be
deployed on the Connectware.

How to create a Basic Service

Services are installed using a commissioning file. Within this text-based YAML file, all so-called resources
like connections, endpoints, users, permissions and containerized applications a service uses are listed.
Below you will find an example service commissioning file that deploys a Grafana instance which we will
configure to show data provided by an OPC UA Server and stored in an InfluxDB. If any section of the service
commissioning file needs clarification please feel free to visit the Connectware Docs.

Description & Metadata
The first two sections of the service commissioning file give more general information. In the section
description you can give a short description of the service which will also be displayed in the service’s
details view on the Connectware Admin User Interface (Admin UI). The section metadata contains the meta
information for the service that is being installed. Here we set a name of the service, version number, provide
an icon for the thumbnail of the service, specify a provider and a related homepage.

https://grafana.com/
https://docs.cybus.io/latest/user/services/index.html

3 www.cybus.io

Cybus Learn > Build and improve

#--

CYBUS SERVICE COMMISSIONING

#--

description: |

 Service Commissioning File Example

 Cybus Learn - Service Basics

 https://learn.cybus.io/lessons/service-basics/

metadata:

 name: Service Basics Example

 version: 0.0.3

 icon: https://www.cybus.io/wp-content/uploads/2019/03/Cybus-logo-Claim-lang.svg

 provider: Cybus GmbH

 homepage: https://www.cybus.io

Parameters
To make a service configurable, we can specify parameters. Parameters are like referable variables whose
values are defined by the user every time a service is to be installed or reconfigured. When applying a
commissioning file in the Connectware, the user is asked to enter custom values for the parameters or to
confirm the default values.
In this example we use parameters to make the OPC UA server address configurable for the case it would
move to another location.

#--

Parameters

#--

parameters:

 opcuaHost:

 type: string

 description: OPC UA Host Address

 default: opcuaserver.com

 opcuaPort:

 type: integer

 description: OPC UA Host Port

 default: 48010

4 www.cybus.io

Cybus Learn > Build and improve

Resources
In the Resources section we declare every resource that is needed for our service. All resources like
connections, endpoints, users, permissions and containerized applications are configured here. The first
resource we define for our service is the connection to the OPC UA server.

#--

Resources

#--

resources:

Connections & Endpoints
In this lesson we will collect some simulated data from a public OPC UA server. We define a connection and
endpoint resources for this. For the connection we just need to specify the protocol as well as the server’s
host address and port, which we define by referencing the previously declared parameters. For the endpoints
we define three resources, each subscribing to a variable node on the OPC UA server identified through the
nodeId, which will be our data sources.

 #--

 # OPC UA Connection

 #--

 opcuaConnection:

 type: Cybus::Connection

 properties:

 protocol: Opcua

 connection:

 host: !ref opcuaHost

 port: !ref opcuaPort

 #username: myUsername

 #password: myPassword

 Humidity:

 type: Cybus::Endpoint

 properties:

 protocol: Opcua

 connection: !ref opcuaConnection

5 www.cybus.io

Cybus Learn > Build and improve

 subscribe:

 nodeId: ns=3;s=AirConditioner_1.Humidity

 PowerConsumption:

 type: Cybus::Endpoint

 properties:

 protocol: Opcua

 connection: !ref opcuaConnection

 subscribe:

 nodeId: ns=3;s=AirConditioner_1.PowerConsumption

 Temperature:

 type: Cybus::Endpoint

 properties:

 protocol: Opcua

 connection: !ref opcuaConnection

 subscribe:

 nodeId: ns=3;s=AirConditioner_1.Temperature

We define another connection for storing the collected data in an InfluxDB. The InfluxDB will be set up later in
this lesson but we already know that it will be running within the Connectware as a containerized application.
For the specific case of accessing a containerized application within the Connectware, the host has to be
defined as connectware. The InfluxDB will be available on port 8086 of that container. The name of the
InfluxDB bucket to store information is not really important in this use case and will be set to generic. The
transport scheme will be set to http.
We also define an endpoint for the InfluxDB connection which will carry out queries to write data to the
InfluxDB. Which data will actually be written to the database will be defined in the next step.

 #--

 # InfluxDB Connection

 #--

 influxdbConnection:

 type: Cybus::Connection
 properties:

 protocol: Influxdb

 connection:

6 www.cybus.io

Cybus Learn > Build and improve

 host: connectware

 port: 8086

 bucket: generic

 scheme: http

 airconditionerWrite:

 type: Cybus::Endpoint

 properties:

 protocol: Influxdb

 connection: !ref influxdbConnection

 write:

 measurement: airconditioner

To learn more about the details of defining connections and endpoints utilizing various protocols, explore
other lessons on Cybus Learn. To learn more about the setup of an OPC UA connection and endpoints, have a
look at the article How to Connect to an OPC UA Server. For details of further protocols you can also consult
the Protocol Details in our Docs.

Mappings
The data collected by our OPC UA endpoints should be available on the MQTT data interface provided by the
Connectware MQTT Broker. So we create a mapping from the OPC UA endpoints to the desired MQTT topics.
The mqttMapping subscribes to the endpoints we created previously and which we refer to by name utilizing
the !ref operator followed by the resource’s name. The mapping then publishes the data to the specified
topic.

 #--

 # MAPPINGS

 #--

 mqttMapping:

 type: Cybus::Mapping

 properties:

 mappings:

 - subscribe:

http://www.cybus.io/learn
https://www.cybus.io/learn/how-to-connect-and-integrate-an-opc-ua-server/
https://docs.cybus.io/latest/user/protocols/index.html

7 www.cybus.io

Cybus Learn > Build and improve

 endpoint: !ref Humidity

 publish:

 topic: ‚building-automation/airconditioner/1/humidity‘

 - subscribe:

 endpoint: !ref PowerConsumption

 publish:

 topic: ‚building-automation/airconditioner/1/power-consumption‘

 - subscribe:

 endpoint: !ref Temperature

 publish:

 topic: ‚building-automation/airconditioner/1/temperature‘

We create another mapping resource which will be responsible for mapping data from the MQTT topics to
the endpoint airconditionerWrite, again referenced with the !ref operator. We will additionally do some
data pre-processing in this mapping to get the information about the datas origin to the database and for that
we utilize a so-called rule. This rule is based on a JSONata expression which will add the name of the last
subtopic to the message’s JSON string under the key “measurement”. The value of this key will overwrite
the default measurement name we defined in the endpoint definition when sent to InfluxDB. It is determined
by the + operator in the subscribe-topic definition that acts as a wildcard while deriving a context variable
named measurement.

 influxdbMapping:
 type: Cybus::Mapping

 properties:

 mappings:

 - subscribe:

 topic: ‚building-automation/airconditioner/1/+measurement‘

 publish:

 endpoint: !ref airconditionerWrite

 rules:

 - transform:

 expression: ‚$merge([$,{„measurement“: $context.vars.measurement}])‘

For more information on the creation of mappings again take a look at the lesson How to connect to an OPC
UA server.

https://jsonata.org/
https://www.cybus.io/learn/how-to-connect-and-integrate-an-opc-ua-server/
https://www.cybus.io/learn/how-to-connect-and-integrate-an-opc-ua-server/

8 www.cybus.io

Cybus Learn > Build and improve

Volumes
A volume is a resource that represents a storage space and can be associated with containers. We want to
utilize two containers, which will need additional storage space, so we create a volume for each of them.

 #--

 # VOLUMES

 #--

 grafanaVolume:

 type: Cybus::Volume

 influxdbVolume:

 type: Cybus::Volume

Ingress Routes
The service containers running within the Connectware architecture are not directly exposed and are running
separate from the Connectware core containers for security reasons. To make them accessible from the
outside as well as from within Connectware we have to define an ingress route for each of them.
Ingress routes allow services to provide web dashboards and REST APIs which can then be accessed through
the HTTPS interface of the Cybus Connectware. In this case we define an HTTP interface and point it to port
3000 on the Grafana container which will allow us to access the dashboards.

 #--

 # INGRESS ROUTES

 #--

 # Grafana

 grafanaURL:

 type: Cybus::IngressRoute

 properties:

 container: !ref genericGrafana

 type: http

 slug: grafana

 target:

 path: ‚/‘

9 www.cybus.io

Cybus Learn > Build and improve

 port: 3000

Ingress routes also allow communication between the Connectware core containers and custom containers
utilized by services. For the InfluxDB container we define a tcp route between the container port 8086, on
which the InfluxDB is available, and the Connectware port 8086, which we defined our InfluxDB connection
to connect to.

InfluxDB

 influxdbRoute:

 type: Cybus::IngressRoute

 properties:

 container: !ref influxdb

 type: tcp

 containerPort: 8086

 connectwarePort: 8086

To learn more details about ingress route resources take a look at the Connectware Docs.

Frontends
For accessing the dashboard on the frontend we define a link to the Grafana ingress route, which will simply
provide a button named Dashboard on our service details view in the Connectware Admin UI.

 #--

 # FRONTENDS

 #--

 dashboard:

 type: Cybus::Link

 properties:

 name: Dashboard

 ingressRoute: !ref grafanaURL

 href: ‚‘

https://docs.cybus.io/latest/user/services/structure/resources/ingress-route.html

10 www.cybus.io

Cybus Learn > Build and improve

Containers
The containers section comprises the Docker Containers the service will run. These containers can either
come from the Official Docker Registry or from the Cybus Registry. That means any application that is
deployed on Connectware can take full advantage of all the containerized software on Docker Hub and your
custom containerized software delivered securely through the Cybus Registry. In the example below we pull
the official InfluxDB image from Docker Hub and a pre-configured version of Grafana from the Cybus registry.
Several options that can be used when configuring these containers can be found in the Connectware Docs.
For the container-specific environmental variables defined under the property environment you should
consult the container’s documentation.

 #--

 # CONTAINERS

 #--

 influxdb:

 type: Cybus::Container

 properties:

 image: registry.hub.docker.com/library/influxdb:1.8-alpine

 volumes:

 - !sub ‚${influxdbVolume}:/var/lib/influxdb‘

 environment:

 INFLUXDB_DB: generic

 INFLUXDB_HTTP_FLUX_ENABLED: true

 genericGrafana:

 type: Cybus::Container

 properties:

 image: registry.cybus.io/cybus-services/generic-grafana:1.3.0

 volumes:

 - !sub ‚${grafanaVolume}:/var/lib/grafana‘

 environment:

 GF_SERVER_ROOT_URL: !sub ‚/services/${Cybus::ServiceId}/grafana‘

 GF_AUTH_ANONYMOUS_ENABLED: true

 INFLUX_HOST: !ref influxdb

 INFLUX_PORT: 8086

 INFLUX_DB: generic

https://learn.cybus.io/lessons/docker-basics/
https://hub.docker.com/
https://registry.cybus.io/
https://docs.cybus.io/latest/user/services/

11 www.cybus.io

Cybus Learn > Build and improve

How to install a Service

Now that we know what a service is and we have configured our own example we can install it on the
Connectware. The service commissioning file can be found on GitHub.

Install Service
1) Open the Admin UI of your Connectware instance and navigate to the services section.

2) Click the plus-button in the upper right corner to add a service.
3) Select the service-example-commissioning-file.yml on your computer and click Install to confirm
the default values and start the installation.

4) Click the now existing entry of your service in the list to open the details view.
5) Click the enable button on your Service.

https://github.com/cybusio/example-service-basics

12 www.cybus.io

Cybus Learn > Build and improve

Explore Service
Now that you have successfully installed and enabled a service we can use the provided dashboard and
configure Grafana to visualize our simulation data.

1) First click the Dashboard button on the service detail view.

2) The welcome screen of Grafana has now opened in a new tab. Click the Sign In button in the bottom left
corner and log in with the default Grafana credentials username: admin and password: admin.

13 www.cybus.io

Cybus Learn > Build and improve

3) As soon as you are logged in and back to the welcome screen go to the side menu and create a new
dashboard.

4) Choose Add Query from the new panel.

14 www.cybus.io

Cybus Learn > Build and improve

5) Through service commissioning our InfluxDB is already connected to Grafana and selected as default
database. Click on select measurement and a list will present the data to you that we mapped on the MQTT
topics.

6) With the four circles on the left side you can switch between different setting categories and for example
edit the name of the panel.

15 www.cybus.io

Cybus Learn > Build and improve

7) In the upper right corner you can choose the time range and refresh rate. Next to this click the Save
dashboard button, choose a name for the dashboard and click Save.

8) Clicking the highlighted Add panel button you can extend your dashboard with more panels like that.

16 www.cybus.io

Cybus Learn > Build and improve

Cybus is a specialist for secure IIoT Edge software, headquartered in Germany. Cybus Connectware serves smart factories

as a universal Edge and DevOps hub. Machine builders and providers of IIoT services use the Cybus Connectware as

a software-based gateway. As early as 2017, Cybus published the first secure industrial connector for machine data

according to today‘s DIN SPEC 27070 standard. Industry analyst Gartner named Cybus a worldwide "Cool Vendor“.

Today, the company counts medium-sized and large companies from numerous industrial sectors such as mechanical

engineering, automotive and aviation among its customers.

Cybus GmbH · Osterstraße 124 · 20255 Hamburg · Germany · www.cybus.io · hello@cybus.io · (+49) 40 228 58 68 51

The query editor for Grafana is incredibly powerful and can do much more then we will show in this tutorial.
For more details read the documentation here.

Summary

In this lesson we learned what services are and made a basic Grafana service whose configuration gave a
short demonstration of the various resources a service can utilize and how they are configured to create a
consistent context of cooperation. We then configured Grafana to visualize humidity data from our simulation
OPC UA server.
This article should have given you an overview over the possibilities that services offer in terms of
interconnectivity. Knowing the methods of utilizing containers, including data sources, organizing their data
flow and managing their access permissions should give you a hint of how you can structure the first own
commissioning file for your Connectware!

Going further

Learn more about Cybus Connectware in our Connectware Docs or explore more lessons here on Cybus
Learn. If you would like to know how to include user management in your service, take a look at the lesson
on User Management. You can also find more information about using the Grafana service in the Grafana
Documentation.

http://docs.grafana.org/features/datasources/influxdb/#query-editor
https://docs.cybus.io/
https://cybus.io/learn
https://cybus.io/learn
https://www.cybus.io/learn/user-management-basics/
http://docs.grafana.org/
http://docs.grafana.org/

